
PHP2Uni: Building Unikernels using
Scripting Language Transpilation

Thomas Pasquier
Harvard University

Cambridge, USA

Email: tfjmp@seas.harvard.edu

David Eyers
University of Otago

Dunedin, New Zealand

Email: dme@cs.otago.ac.nz

Jean Bacon
University of Cambridge

Cambridge, United Kingdom

Email: jean.bacon@cl.cam.ac.uk

Abstract—Unikernels are a rapidly emerging technology in
the world of cloud computing. Unikernels build on research
into library operating systems to deliver smaller, faster and
more secure virtual machines, specifically optimised for a single
application service. These features are especially useful in cost
or resource constrained environments. However, as with any new
technology, early adopters need to master many technical details,
and understand many aspects of the mechanisms used to build
and deploy unikernels. Both of these factors may slow adoption
rates. In this paper, we present our initial experiments into the
use of an approach for building unikernels that is accessible to
those whose technical expertise is focused on web development.
We present PHP2Uni: a tool chain that takes a website built from
PHP files—PHP remains the most widely used web language—
and builds a resource-efficient unikernel image from them, while
requiring little knowledge of the underlying operating system
software complexity.

I. INTRODUCTION

Unikernels are generating significant interest as a potential
breakthrough in virtualisation technology, due to their im-
proved security, small footprint, fast boot time and whole-
system optimisation (see § II). These benefits align well
with service-oriented architectures [1], microservice architec-
tures [2], the needs of the Internet of Things (IoT) [3], and
edge/fog computing [4].

However, most current unikernels require operating system
(OS) software experience and advanced programming skills in
languages not typically used by web developers. For the fastest
potential adoption in application domains such as the IoT, the
skill sets and resources offered by today’s web application
developers need to be harnessed. Indeed, in domains such
as Fog computing, programmability is often considered a
challenge that needs to be addressed [5]. PHP was ranked as
seventh most used language in 2015 and 2016 [6], [7]. When
considering web development, PHP is positioned far above
languages such as OCaml, Haskell, Erlang or even C++, that
are the targets of the popular unikernel projects. To facilitate
adoption, unikernels should be made more accessible to typical
web developers, and build upon languages and libraries used
in the web development community.

One approach for building a unikernel web application is to
compile a PHP interpreter as a unikernel. This is the approach
adopted, for example, by rump-php.1

In this paper we propose the use of transpilation techniques,
made popular a few years ago by Facebook [8], to build
unikernels from PHP code. Our approach—prototyped in
PHP2Uni—is to transpile PHP code into C++ classes, and

build unikernel images from them. A key insight of our
approach stems from the combination of transpilation and
unikernels, which we believe could facilitate a wider adoption
of unikernels, and ease deployment of innovative solutions in
resource-constrained environments.

Currently PHP2Uni is able to build IncludeOS [9] and rump
kernel [10] unikernel images (see § III-A and § III-B) from
standard PHP scripts.

In this paper, we make the following contributions: 1) we
demonstrate the feasibility of transpilation in the context of
unikernel construction; 2) we present use cases and benefits
that motivate this approach; 3) we discuss the engineering
choices made during development and report on our experi-
ence; 4) we do a preliminary comparison in terms of compu-
tation and memory consumption of our approach against other
types of deployments.

The rest of the paper is organised as follows: § II gives
a brief overview of virtualisation techniques, unikernels and
transpilers. § III describes the implementation of our proto-
type. § IV presents early-stage evaluation results. § V discusses
our plan for future work, and some related challenges that we
identified. We conclude and discuss future work in § VI.

II. BACKGROUND

In this section we briefly discuss various contemporary
virtualisation techniques, namely traditional Virtual Machines
(VM), containers and unikernels. We then introduce unikernels
and transpilers, indicating the relevant literature.

A. Virtualisation techniques

Since the surge in Intel x86-based virtualisation that powers
today’s cloud computing data centres, full-machine virtual-
isation has been the dominant method used to provide the
necessary isolation for server applications. However, recent
advances in container technology on Linux have demonstrated
viable alternatives.2 Applications and their environment are
isolated on top of a shared OS kernel and some common
libraries. OS-level isolation mechanisms are used to separate
applications, such as LXC [11] in the Linux world. Commer-
cial solutions such as Docker3 due to increases in efficiency
and effective deployment, are gaining momentum [12], [13].

However Unikernels [14] are emerging as a disruptive tech-
nology that may change the path of mainstream virtualisation
yet again. Typically, VMs or containers run a single service/ap-
plication, yet are built upon a full traditional software stack.

2017 IEEE International Conference on Cloud Engineering

978-1-5090-5817-4/17 $31.00 © 2017 IEEE

DOI 10.1109/IC2E.2017.13

197



Hypervisor Core Operating System

Guest OS Guest OS Guest OS

Binaries/
Libraries

Binaries/
Libraries

Binaries/
Libraries

App. App. App.

App. App. App.

Binaries/
Libraries

Binaries/
Libraries

Binaries/
Libraries

Hypervisor

Library OSLibrary OSLibrary OS

Container Boundaries

App. App. App.

Unikernel

Fig. 1. Comparison of Virtual Machine, Container and Unikernel approaches.

This software stack contains a number of features useful for
a general OS, but not required in their actual deployment
contexts. Therefore, in a unikernel, the application and the
OS merge into a single unit, that only contains the features
strictly required to run the application. Unikernel particulars
are further discussed in § II-B.

As shown in Fig. 1, a) the hypervisor may support separated
VMs, each with its own OS; b) a single shared OS may support
containers that isolate applications; or c) the hypervisor may
directly support applications, each built from a library OS
(Unikernel).

B. Unikernels

A unikernel runs a single application directly over the
hypervisor without the need for a stand-alone OS. Unikernels
are single address space systems that bundle together an
application and a selection of system components relevant
for that particular application, into a single image. Unikernel
applications are built using a library OS [15], [14] and only
contain the minimum functionality required for the application
to work. Like containers, unikernels are easily deployed, and
come with a number of advantages:

1) extremely small footprint, which helps optimise resource
consumption in a cloud or IoT environment [16];

2) significantly reduced attack surface, by removing all
components not required to run the application [17];

3) extremely fast deployment and migration [18], for ex-
ample to support edge computing;

4) whole-system optimisation targeted to the specific ap-
plication [19].

Further, when compared with container-based solutions
unikernels are self-contained, potentially mere megabyte-scale
images that have no dependency on the underlying OS. Re-
cent advances4 are integrating unikernel deployment in the
container-based solution Docker. UniK5 also aims to facilitate
the deployment of Unikernels with integration into Kubernetes
and Cloud Foundry. These projects take useful steps toward
mainstream use of unikernels.

There are a number of existing projects that focus on
different aspects of unikernel technology: HaLVM6 in Haskell,
Mirage OS [19] in OCaml and IncludeOS [9] in C++ all take
a clean-slate approach; ClickOS [20] emphasises speed; and
rump kernels [10] are built upon the rump kernel drivers,
which provide compatibility with legacy POSIX software.

C. Transpilers

Transpilers (also referred to as transcompilers or source-to-
source compilers) are software programs that take source code
in a given language as input and generate the equivalent source
code in a second language at an equivalent level of abstraction.

Transpilers can also be used to handle API changes, such as
Coccinelle [21], which was developed to ease maintenance of
the Linux Operating System.

Another use is the translation of source code between
different versions of the same language (for example, the tool
provided by Microsoft to translate VB6 code when VB.net
was released).

The transpiler more directly relevant to this paper is
HPHPc [8], a Facebook-developed transpiler from PHP to
C++. Domain Specific Languages [22] are also well-known
application domains for transpilers. Transpilers have also
gained popularity in the JavaScript world with projects such
as Dart,7 CoffeeScript,8 and Flow,9 among many others.

In the rest of this paper, we examine how well-known and
understood transpilation techniques can be used to ease the
development of unikernel-based services. We have chosen PHP
as a proof of concept language due to its popularity (see
§ I) and the large number of PHP deployment solutions (see
§ IV-A).

III. IMPLEMENTATION

In this section, we discuss our implementation. We first
introduce our current two target unikernel architectures:

• IncludeOS [9];
• Rump kernel [23].

The purpose of providing two targets is to 1) demonstrate
that our proposed technique can easily be generalised, 2)
to allow pros and cons of different unikernel environments
to be evaluated. We then discuss the transpilation process
that transforms websites built from PHP scripts into C++

applications, that are compiled against the two target unikernel
architectures. In this prototype we built on, extended, and fixed
some bugs in php2cpp.10 Php2cpp is a simple transpiler with
a small codebase. Finally, we discuss the limitations of the
current prototype.

A. IncludeOS

IncludeOS is a single-tasking OS, specifically designed for
a virtualised environment. Developers write code directly in
C++ that builds against the library OS (#include <os>), with
a GCC-customised tool chain that generates the corresponding
OS images. The build system extracts the required functional-
ity from the pre-compiled OS library at link time and forms a
single executable binary file. The boot sector is attached and
together forms the image-file. This resulting image is targeted
to run on virtualised x86 hardware. The image can run in
various virtualisation environments such as QEMU, KVM,
VMware, or Xen.

IncludeOS does not have a program loader, and therefore
does not use the main symbol as an entry point. A Service-
class is provided and the developer must implement the
Service::start method which is called after the OS completes
its initialisation. Our prototype transpiles PHP applications
into classes that are instantiated and manipulated within the
Service::start method.

198



PHP Files

Routes file

Message

RequestResponse

ResponsePHP

ResponseX ResponseY ResponseZ

ResponseFactory
Generates

Generate

Transpiled code

Fig. 2. PHP2Uni’s architecture and key classes.

B. Rump Kernels
The rump kernel project is another, more mature, solution to

build unikernel images. The rump kernel tool chain provides
NetBSD drivers as portable components in order to build
unikernel images from virtually any POSIX application [10],
as a POSIX compliant interface is provided.

The advantage of the rump kernel project is its maturity
when compared to IncludeOS. However, it is designed to
run arbitrary POSIX applications, whereas more specialised
unikernels such as IncludeOS will allow better performance
to be obtained. We show this to be true in terms of memory
footprint and computational performance in § IV.

The code obtained after transpilation is extremely similar.
We discuss relevant dissimilarities in the subsections that
follow.

C. From PHP files to a unikernel
PHP2Uni Service::start implementation contains the fol-

lowing code:

1 / * i n i t i a l i s e s e r v i c e and c r e a t e s o c k e t * /
2 / * [ . . . ] * /
3 / * h a n d l e r e q u e s t * /
4 sock . onAccept ( [ ] ( n e t : : TCP : : S o c k e t& conn ) {
5 s t d : : s t r i n g s t r _ r e q u e s t = conn . r e a d ( 1 0 2 4 ) ;
6 p r i n t f ( "SERVICE g o t d a t a : %s \ n \ n " ,
7 s t r _ r e q u e s t . c _ s t r ( ) ) ;
8 / / p a r s e t h e r e q u e s t
9 h t t p : : Reques t r e q ( s t r _ r e q u e s t ) ;

10 h t t p : : R e s p o n s e F a c t o r y r f ;
11 / / r e t r i e v e t h e r e s p o n s e
12 h t t p : : Response r e s = r f . c r e a t e ( r e q ) ;
13 conn . w r i t e ( r e s . g e t _ h e a d e r ( ) ) ;
14 conn . w r i t e ( r e s . ge t_body ( ) ) ;
15 } ) ;

Listing 1. Extract from Service::start, request handling.

The HTTP request onAccept is read from the socket and
parsed to generate an http::Request instance. The request
instance is passed to http::ResponseFactory that instantiates
the class corresponding to the method/URI pair (e.g. GET
/index). These instantiated classes correspond to the transpiled
PHP code.

Fig. 2 represents the class structure implemented by
PHP2Uni on top of the IncludeOS library. We now describe
the two steps necessary for the building of the virtual machine
through transpilation:
Transpiling http::ResponseFactory: Parts of the
http::ResponseFactory class are generated through the
transpilation of the routes file. A routes file will contain
information such as the following:

1 GET / i n d e x i n d e x . php
2 GET / h e l l o l i b / h e l l o _ g e t . php
3 POST / h e l l o l i b / h e l l o _ p o s t . php
4 GET / i n d e x . php

Listing 2. Example routes file.

The transpiler implements the branching condition correspond-
ing to the method/URI pair, in order for the factory to
instantiate the right class. Each unique PHP file is transpiled
to the corresponding class at compile-time.

Alternatively, instead of pointing the transpiler to a routes
file, the transpiler can be applied to a single PHP file that
may implement an equivalent functionality through a switch
construct over $_SERVER[’REQUEST_URI’]. In such a sce-
nario, http::ResponseFactory is not necessary and a unique
class inheriting from php::ResponsePHP is instantiated to
handle all requests.

However, in order to maintain similar behaviour to a stan-
dard PHP server, we would like to be able to build a web
application using several separate script files. The route file
allows this behaviour to be supported, while not needing to
modify the PHP scripts themselves. This allows the same
application to run as PHP scripts, a PHP2Uni IncludeOS image
or a PHP2Uni rump kernel image (we show deployment of
the same scripts over several solutions in § IV). We believe
this to be a useful division between development-time use of
PHP scripts, with rich logging and diagnostic support, and
production use of PHP2Uni unikernels.
Transpiling pages: php::ResponsePHP implements built-
in PHP functions (e.g. mktime, hexdec etc.). The tran-
spiler generates from PHP files, the classes that inherit from
php::ResponsePHP. Each of these transpiled pages corre-
sponds to an entry in the routes file. The transpilation process
from PHP files to a php::ResponseX class in our current
prototype is as follows:

• pass through the source files recursively to handle file
inclusion, i.e. include / require / require_once;

• scan the source files for class declarations and transpile
them as inner classes of the php::ResponseX class;

• scan the source files for function declarations and tran-
spile them as methods of the php::ResponseX class;

• finally, parse the core PHP script (i.e. the code that is not
part of a class or a function).

D. Limitations

At the moment only a small portion of built-in PHP
functions and classes are supported (e.g. base64_encode,
Exception etc.), but we are increasing this coverage steadily.
There is no inherent limitation on this front, simply an engi-
neering resource constraint. This paper only presents a proof
of concept of our proposed approach, and the full coverage of
the PHP built-in functions and classes which were developed
and expanded for more than two decades is beyond the aim of
this paper. We further discuss this particular issue in § V-C.
However, we believe this approach shows promise, based on
our evaluation results. In the next section we compare the
approach adopted here with alternative deployment solutions.
We show that PHP2Uni, especially the version that uses
IncludeOS, has the potential to occupy a particular niche in

199



TABLE I
SIZE OF VIRTUAL MACHINES

VM Type VM Size

LAMP Stack Ubuntu VM11 ∼400 MiB (×200)
rump-php ∼63.5 MiB (×30)
PHP2Uni-rump ∼23 MiB (×10)
PHP2Uni-IncludeOS ∼2 MiB

cloud or IoT environments where computational resources are
extremely constrained, or represent a financial cost that should
be minimised.

IV. EVALUATION

We performed evaluations in order to identify clearly the
benefits of the proposed approach. The tests were run on an
i7 Ubuntu 14.04 LTS machine with 8 GiB of RAM. An in-
depth report on IncludeOS performance is given in [9], as
well as subsequent papers by the same authors. In this paper,
we particularly focus on comparing PHP2Uni against other
PHP deployment solutions.

We compared the VM size of our unikernel with that of the
standard Linux stack in § IV-B. When comparing performance
or memory footprint (in § IV-B and § IV-C respectively) we
run either directly above the OS or via QEMU/KVM for the
unikernel solutions.

A. Considered deployment solutions
For this paper, we identified and compared a number of

open-source platforms available for the deployment of PHP
applications:
Apache2:12 Using Apache httpd has been the traditional way
to deploy PHP applications. This is our baseline against which
other solutions are compared. We used an ‘out of the box’
configuration without any particular optimisations.

1 FROM php :5.6− apache
2 COPY c o n f i g / php . i n i / u s r / l o c a l / e t c / php /
3 COPY s r c / / v a r /www/ html /

Listing 3. Dockerfile for PHP server.

Docker-Apache2:13 We ran a Docker httpd/PHP stack for
comparison: we used the simplest configuration possible. The
Docker configuration file that was used is shown in Listing 3.
Typical deployment will be the so-called LAMP stack (i.e.
Linux, Apache, MySQL, PHP), in a VM running on top
of an IaaS platform. Again, we used an ‘out of the box’
configuration without any particular optimisations.
rump-php:14 This is a PHP interpreter compiled against the
rump kernel. It provides a much smaller footprint image
when compared with a standard LAMP VM. Deployment
would generally involve a rump-Nginx server handling HTTPS
requests, multiple rump-php instances, and a rump-MySQL in-
stance (alternatively, the MySQL backend may be deployed in
a more traditional fashion). We used the default configuration
without any particular optimisations, taken directly from the
rump package GitHub repository.
HHVM:15 HHVM is the Hip Hop Virtual Machine [24]—an
open source solution developed by Facebook. HHVM is the
successor of the HPHPc [8] transpiler, which uses ahead-of-
time compilation. HHVM uses just-in-time compilation [25] in
order to provide improved performance when compared with

0

20

40

60

80

R
S

S
u

sa
g

e
(M

iB
)

PHP2Uni-IncludeOS PHP2Uni-rump HHVM

Apache2 Docker-Apache2 rump-php

Fig. 3. Memory usage (RSS and as reported by docker stats) comparison
across solutions.

a more traditional PHP deployment environment. We used the
default configuration provided when building HHVM from
their GitHub repository.
PHP2Uni-IncludeOS and PHP2Uni-rump: This is the
solution described in this paper, where we transpile standard
PHP code to C++ and compile the resulting code into an
extremely small unikernel image. Again, we did not try to
provide particularly optimised configurations. Deployment as
part of a multi-tier architecture is identical to rump-php, sim-
ply replacing rump-php instances, with PHP2Uni instances.
Details of the configuration can be found on GitHub—please
see the Availability section, below.

The authors acknowledge that the tested solutions could be
fine-tuned to potentially perform better. However, the observed
differences across solutions is significant enough that we
believe the results to be relevant, regardless.

B. Memory footprint

Table I shows the difference in memory requirements for
VMs necessary to run a PHP application. The Ubuntu VM runs
the whole LAMP (Linux, Apache, DB, PHP) stack rather than
simply httpd + PHP. In terms of size, the effectiveness of the
unikernel approach is clear: note that a PHP2Uni-IncludeOS
image is 200 times smaller than a traditional LAMP image.

Fig. 3 shows the memory consumed by the four solutions
discussed in § IV-A. The figure reports the Resident Set Size
(RSS), which is the memory actually allocated to a process, as
opposed to the Virtual Memory Size (VMS), which includes
swapped data and shared libraries. For the Docker instance, the
value is that reported by docker stat. We see that PHP2Uni-
IncludeOS has memory consumption in the same order of
magnitude as the comparable solution running directly above
the OS. On the other hand, rump-based solutions consume
much more memory (in line with the VM size reported in
Table I). However, compared to solutions running directly over
the OS, they benefit from much stronger isolation. IncludeOS
has been designed with memory constraints in mind, which
explains its very small footprint.

C. Performance

Fig. 4 shows a performance comparison for the four solu-
tions presented in § IV-A. The two microbenchmark appli-
cations tested are index, representing a typical PHP front-
end page with a mix of static and dynamic content as
well as user submitted parameters; and primes, which is a
computation-heavy PHP script, that computes all the prime

200



index primes
0

20

40

60

80

R
es

p
o

n
se

ti
m

e
(m

s)

PHP2Uni-IncludeOS PHP2Uni-rump HHVM

Apache2 Docker-Apache2 rump-php

Fig. 4. Performance comparison across solutions.

numbers between 3 and 5,000. index aims to test PHP code
that produces a high throughput in terms of response speed,
whereas primes is an example of a workload that requires
server-side computation to be performed.

We note that many PHP scripts that have been deployed
today will likely be throughput-limited by the services that
they depend on. For example, many scripts will interact with
a back-end database system. Waiting on external services does
not differ between the runtime models that we are examining.
In such scenarios, the performance is dependent on the local
computation as evaluated in index and prime and the latency
introduced by the external service.

PHP2Uni has similar performance to the other approaches
when dealing with web pages that require minimal computa-
tion (i.e. index). However, there is a clear performance gain
when relatively computation-intensive jobs need to be handled
(i.e. primes). This result is not surprising as one would expect
a C++ compiled program to have better performance than an
interpreted PHP script for this kind of workload.

D. Discussion on deployment strategy

We see the solutions presented in § IV-A as a spectrum with
various pros and cons. Our approach is not overall better or
worse, but may fit particular needs better than the alternatives.

We compare a spectrum of deployment approaches, from a
full LAMP stack VM image to a PHP2Uni IncludeOS image.
These approaches are compared across five dimensions: the
memory footprint, the performance, the isolation strength in
a shared environment, the size of the software stack, and the
behaviour of the code once in deployment compared to the
development environment. Details are discussed below:

Memory footprint: As discussed in § IV-B, memory usage is
one of the most significant factors when comparing the various
approaches. This factor may prove of extreme importance in
two scenarios: financial constraints and resource constraints.
In a ‘pay for use’ service model, a smaller image signifies
lower cost, therefore compromises on other aspects may be
acceptable. In constrained environments (e.g. fog-cloud [26],
mobile-cloud [27] etc.) similar compromises may be accept-
able in order to minimise resource consumption.

Performance: As discussed in § IV-C, we can see that
transpilation techniques when compared to interpretation of
PHP script provide improved performance. Again, in exchange
for other trade-offs, this could prove useful in financially or
computationally constrained environments.

Isolation: Here we make a distinction between tradi-
tional virtualisation techniques and container-based solutions.
Container-based solutions aim at reducing resource consump-
tion by sharing common parts of the OS and software stack at
the expense of stronger isolation.16 However, unikernels as an
emerging approach, provide both smaller memory consump-
tion and strong isolation. The recent acquisition by Docker
of Unikernel Systems and development of solutions such
as UniK for the Kubernetes world (see § II-B), indicate a
growing interest in such technology as a possible alternative to
containers. This is especially true since rump-based solutions
can run virtually any POSIX application, thus occupying the
same market niche as container-based solutions and proposing
an interesting alternative.

Size of software stack: VM-based solutions rely on a
general-purpose OS and the software stack associated with
the environment, in order to run applications. Container-based
solutions, while reducing memory footprint by sharing the
OS and part of the software stack, still rely on that same
general-purpose software stack. Rump-based solutions rely on
a library OS that builds upon components compatible with
POSIX applications. RumpPHP remains dependent on the
original code of the PHP interpreter. Finally, the two PHP2Uni
solutions are each based on a small unikernel stack, and
no legacy interpreter. IncludeOS goes even further, with a
minimal set of features sufficient to provide services, rather
than supporting the POSIX legacy. The definite advantage of
a smaller software stack is the drastic reduction of the number
of ‘moving parts’ and, in consequence, of things that can go
wrong. As discussed in § II-B this is a potential net gain in
terms of security (although it needs the underlying unikernel
technology to have matured enough), but also in terms of
performance and optimisation.

Deployment behaviour: This is one of the main trade-offs
of unikernel-based solutions. In the case of development of
PHP solutions, the natural development cycle involves running
a webserver directly on the developer’s local computer, with
a quick develop/test cycle. The unikernel and standard legacy
OS environments may present different behaviours that require
further integration tests. This is further aggravated by the
inclusion of transpilation. As pointed out in the Facebook
HHVM paper [24], transpilation of large programs is slow,
and developers tend to rely on standard interpretation so-
lutions during development. When moving to the deploy-
ment environment, issues often arise due to differences in
behaviour of the underlying platform. As a consequence,
it requires a more complex integration phase, reducing the
overall development productivity. This led Facebook to move
from transpilation [8] to just-in-time compilation [24] as the
gain in computational performance did not justify increased
development cost. However, by adding a unikernel solution
to the transpilation approach, in addition to an increased
computational performance, we also reduce memory usage
significantly, and provide stronger isolation guarantees. We
perceive this as having a major impact in an as yet relatively
small but increasing niche, namely extremely constrained
environments.

There are a number of potential scenarios where having

201



a VM with an extremely small footprint, coupled with tran-
spilation of some common language, could prove extremely
beneficial. These include cloudlet [28], fog-computing [26]
and other cloud decentralisation approaches, where cloud
services migrated closer to the end-user could benefit from the
approach. These target environments may prove to be more
resource-limited than typical cloud platforms. In scenarios
where applications migrate from the cloud to devices on the
edge, a standard PHP script could be running in the cloud,
to generate equivalent applications for edge deployment by
transpilation, in order to save resources. A less mainstream
scenario for emergency situations is typified by cloudrone [29],
where drones flying above a disaster area provide network and
embedded cloud services (e.g. Facebook’s Safety Check).

The addition of transpilation techniques is seen as a means
to open up such techniques to existing legacy web applications
and frameworks, but also in a language (and potentially a
wider range of languages in the future) familiar to a wide range
of web-developers. In particular, a direct use of IncludeOS
would represent a major departure from the skill sets of the
vast majority of web-developers, which may in turn increase
development costs.

V. FUTURE WORK & CHALLENGES

We believe that our approach presents an interesting alter-
native to developing services in resource or cost-constrained
environments. In this section we discuss interesting challenges,
and future directions that we identify as worth exploring.

A. Unikernel maturity

IncludeOS is itself a work in progress and the API and
underlying implementation are neither stable nor feature com-
plete. We aim to keep PHP2Uni up-to-date with IncludeOS
evolution and to take advantage of features/improvements as
they appear. The rump kernel toolchain appears to be more ma-
ture in comparison with the relatively younger IncludeOS and
was easier to use within our workload. However, the extremely
small size of IncludeOS images make this solution the ideal
one for deployment in resource constrained environments.

B. Transpilation versus just-in-time compilation

HHVM [24] uses just-in-time compilation techniques [25],
in order to address shortcomings of the HPHPc approach.
The problems addressed by HHVM were: 1) PHP being a
dynamically typed language, types are sometimes unknown
when used with transpilation, which leads to inefficiency.
PHP2Uni relies on type hints. Type hints consist of comments
in the PHP code that describe the type of a given variable.
The transpiler uses these hints to decide which type to assign
to the corresponding C++ code. In the case when a hint
is not present, the transpiler determines the variable based
on the type of the value being assigned. This is especially
useful when declaring classes or functions, where it may
be difficult to resolve the type of a given parameter. Hints
can generally be extracted from comments surrounding the
code. We could, for example, easily imagine extracting this
information from phpDocumentor (a tool to automatically gen-
erate documentation from source code) comments.17 HHVM

addresses this issue through just-in-time compilation, as it
has access to runtime values and can therefore optimise the
code. 2) As transpilation takes time for very large programs,
interpretation via HPHPi was used during the development life
cycle. But the behaviour of the program compiled by HPHPc
in deployment differed from the PHP code running over the
(HPHPi) interpreter. HHVM addresses this issue by being used
as both the development and the deployment environment.
HHVM has the distinct advantage of providing the familiar
and rapid PHP development environment, while providing a
very significant performance improvement. PHP2Uni does not
target large applications but rather, smaller and simpler micro-
service applications that need to run under cost or resource
constraints.

In such scenarios, we believe that the clear gains in terms of
memory, compared to traditional VM images, and in terms of
isolation compared to containers, outweigh the disadvantages.
However, work on the development environment may focus
on guaranteeing the preservation of a familiar workflow to
developers.

C. Extending existing languages or a DSL?
The advantage of using existing scripting languages is that

the same scripts can be used to instantiate the application
to run in different environments. Also, developers do not
need to learn a new set of skills. However, as discussed,
transpilation may lead to slightly different behaviour from
the interpreted language. We may have to implement legacy
features developed over several decades. In addition, we may
want to extend the language to take advantage of features
specific to the unikernel environment. Therefore, a viable
alternative may be to consider the development of a DSL
language specifically designed to write micro-services that can
be instantiated as unikernels, or to extend our work to support
a language such as Dart.

D. Deployment tools chain
Finally, all the previous points will be explored through the

development and implementation of a deployment solution that
is able to migrate micro-services across several deployment
environments, choosing the appropriate method among those
listed in § IV. In particular, we will look at automatic
migration from traditional cloud platforms to edge devices.
We aim to look at extending/modifying tools such as UniK18

or Dokku,19 trying to provide a streamlined and convenient
experience when deploying applications.

VI. CONCLUSION

This paper presents our early efforts in using transpilation
to improve the accessibility of unikernel technology, and
explores how such deployment solutions may fit in the current
deployment spectrum. We have demonstrated that such an
approach has potential in cost- and/or resource-constrained
environments. More importantly, widely available web devel-
oper skill sets are built on, rather than requiring specialised
training in new system software. This will hopefully lead to
more rapid acceptance and use of unikernel technology. We
have released the early prototype as open-source software, and
plan to develop it further as we gather feedback.

202



ACKNOWLEDGMENTS

This work was supported by UK Engineering and Physical
Sciences Research Council grant EP/K011510 CloudSafe-
tyNet: End-to-End Application Security in the Cloud. We
acknowledge the support of Microsoft through the Microsoft
Cloud Computing Research Centre.

REFERENCES

[1] R. Perrey and M. Lycett, “Service-oriented architecture,” in Applications
and the Internet Workshops, 2003. Proceedings. 2003 Symposium on.
IEEE, 2003, pp. 116–119.

[2] J. Thones, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116,
2015.

[3] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty security
considerations for cloud-supported Internet of Things,” IEEE Internet of
Things Journal, vol. 3, no. 3, pp. 269 – 284, 2016.

[4] I. Stojmenovic and S. Wen, “The Fog computing paradigm: Scenarios
and security issues,” in Computer Science and Information Systems
(FedCSIS), 2014 Federated Conference on. IEEE, 2014, pp. 1–8.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” 2016.

[6] S. Cass, “The 2015 top ten programming languages,” IEE Spectrum,
2015. [Online]. Available: http://spectrum.ieee.org/computing/software/
the-2015-top-ten-programming-languages

[7] ——, “The 2016 top ten programming languages,” IEE Spectrum,
2016. [Online]. Available: http://spectrum.ieee.org/computing/software/
the-2016-top-programming-languages

[8] H. Zhao, I. Proctor, M. Yang, X. Qi, M. Williams, Q. Gao, G. Ottoni,
A. Paroski, S. MacVicar, J. Evans et al., “The HipHop compiler for
PHP,” in ACM SIGPLAN Notices, vol. 47, no. 10. ACM, 2012, pp.
575–586.

[9] A. Bratterud, A.-A. Walla, H. Haugerud, P. Engelstad, and K. Begnum,
“IncludeOS: A minimal, resource efficient unikernel for cloud services,”
in International Conference on Cloud Computing Technology and Sci-
ence (CloudCom’15). IEEE, 2015.

[10] A. Kantee and J. Cormack, “Rump Kernels No OS? No Problem!”
USENIX ;login: magazine, 2014.

[11] M. Helsley, “LXC: Linux container tools,” IBM devloperWorks Technical
Library, 2009.

[12] D. Strauss, “Containers–not virtual machines–are the future cloud,” The
Linux Journal, vol. 228, pp. 118–123, 2013.

[13] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs Containerization
to Support PaaS,” in International Conference on Cloud Engineering
(IC2E). IEEE, 2014, pp. 610–614.

[14] A. Madhavapeddy and D. J. Scott, “Unikernels: the rise of the virtual
library operating system,” Communication of the ACM, vol. 57, no. 1,
pp. 61–69, 2014.

[15] D. R. Engler, M. F. Kaashoek et al., “Exokernel: An operating system
architecture for application-level resource management,” in Symposium
on Operating Systems Principles (SOSP’95). ACM, 1995, pp. 251–266.

[16] A. Bratterud and H. Haugerud, “Maximizing hypervisor scalability
using minimal virtual machines,” in International Conference on Cloud
Computing Technology and Science (CloudCom’13), vol. 1. IEEE,
2013, pp. 218–223.

[17] K. Stengel, F. Schmaus, and R. Kapitza, “EsseOS: Haskell-based tailored
services for the cloud,” in International Workshop on Adaptive and
Reflective Middleware. ACM, 2013, p. 4.

[18] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam et al., “Jitsu:
Just-in-time summoning of Unikernels,” in Symposium on Networked
System Design and Implementation (NSDI’15). USENIX, 2015.

[19] A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire, S. Hand,
T. Deegan, D. McAuley, and J. Crowcroft, “Turning down the LAMP:
software specialisation for the cloud,” in Conference on Hot topics in
Cloud Computing (HotCloud’10), vol. 10. USENIX, 2010, pp. 11–11.

[20] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualiza-
tion,” in Symposium on Networked Systems Design and Implementation
(NSDI’14). USENIX, 2014, pp. 459–473.

[21] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in Linux device drivers,” in ACM
SIGOPS Operating Systems Review, vol. 42, no. 4. ACM, 2008, pp.
247–260.

[22] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific languages:
An annotated bibliography.” Sigplan Notices, vol. 35, no. 6, pp. 26–36,
2000.

[23] A. Kantee, “Flexible operating system internals: The design and im-
plementation of the Anykernel and Rump Kernels,” Ph.D. dissertation,
Aalto University, 2012.

[24] K. Adams, J. Evans, B. Maher, G. Ottoni, A. Paroski, B. Simmers,
E. Smith, and O. Yamauchi, “The Hiphop Virtual Machine,” in ACM
SIGPLAN Notices, vol. 49, no. 10. ACM, 2014, pp. 777–790.

[25] J. Aycock, “A brief history of just-in-time,” Computing Surveys, vol. 35,
no. 2, pp. 97–113, 2003.

[26] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New
York, NY, USA: ACM, 2012, pp. 13–16.

[27] N. Fernando, S. W. Loke, and J. W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Comp. Syst., vol. 29, pp. 84–106, 2013.

[28] A. Bahtovski and M. Gusev, “Cloudlet challenges,” Procedia Engineer-
ing, vol. 69, pp. 704–711, 2014.

[29] A. Sathiaseelan, A. Lertsinsrubtavee, P. Baskaran, J. Crowcroft et al.,
“Cloudrone: Micro clouds in the sky,” arXiv preprint arXiv:1604.08243,
2016.

[30] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kuber-
netes,” IEEE Cloud Computing Magazine, no. 3, pp. 81–84, 2014.

[31] B. Des Ligneris, “Virtualization of Linux based computers: the Linux-
VServer project,” in High Performance Computing Systems and Appli-
cations, 2005. HPCS 2005. 19th International Symposium on. IEEE,
2005, pp. 340–346.

AVAILABILITY

https://github.com/tfjmp/php2uni.

NOTES

1https://github.com/rumpkernel/rumprun-packages
2We fully acknowledge the prescience of Solaris Zones [30], the Linux

VServer kernels [31] and other technologies in terms of OS-level isolation, but
their impact has not come anywhere near that of the recent Linux container
developments.

3https://www.docker.com/
4https://github.com/Unikernel-Systems/DockerConEU2015-demo
5https://github.com/emc-advanced-dev/unik
6https://galois.com/project/halvm/
7https://www.dartlang.org/
8http://coffeescript.org/
9http://flowtype.org/

10http://www.mibsoftware.com/php2cpp/
11https://bitnami.com/stack/lamp/virtual-machine
12https://httpd.apache.org/
13https://hub.docker.com/_/php/
14https://github.com/rumpkernel/rumprun-packages/tree/master/php5
15https://github.com/facebook/hhvm
16Although we acknowledge improvement on that front, we do not believe

that a level of isolation similar to a hypervisor can be achieved.
17https://phpdoc.org/
18https://github.com/emc-advanced-dev/unik
19https://github.com/dokku/dokku—an extremely simple PaaS platform

built with some of Heroku’s open source blocks.

203


