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High-level problem overview

* We want to:

- optimize configurations of data
processing frameworks (Hadoop, Spark,
Flink) in workload-specific ways.

— allow amortization of tuning costs in
realistic settings:

* evolving input data (increase in size,
change of characteristics)

* an elastic cluster configuration
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High-level problem overview

* We want to:

— optimize execution of workloads in data processing
frameworks (Hadoop, Spark, Flink)

- allow amortization of tuning costs in realistic
settings:

* evolving input data (increase in size, change of
characteristics)

* an elastic cluster configuration

* When assuming repeated workload execution

— daily/weekly/monthly reporting
- incremental data analysis
- frequent analytics queries/processing
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High-level solution overview

* How:

- By incrementally tuning the
configuration of the framework

* per workload
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* determining and tuning only

significant parameters Tuned
Config

- By leveraging existing tuning
knowledge across similar workloads

— By carefully combining a number of

established ML techniques and adapting

them to the problem domain
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Required puzzle pieces

 Workload characterization
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Required puzzle pieces

e Workload characterization

1) Workload monitoring e :[ """
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[1] K. Swersky et. all, Multi-task bayesian optimization



Workload characterization

* Monitoring workload caracteristics & resource consumption

— Metric examples:

* number of tasks per stage, input/output size, data spilled to disk, etc
 CPU time, memory, GC time, serialization time, ...

- Representing metrics in relative terms

e GC time as proportion of total CPU time
* Amount of shuffled/disk spilled data as proportion of total input data
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Workload characterization

* Workload representation

- Would like a low-dimensionality representation because it’s difficult
to come up with informative distance metrics in high-dimensional
space

- We propose an autoencoder based solution, where the low-
dimensionality representation is learned

» offline phase based on historic execution metrics
* resulting encoding/decoding model can be reused
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Workload characterization

* Similarity analysis
- Given new workload, find a source (already tuned) workload

* Closest in encoded representation space (using Ly norm)

* Distance computed on a fixed fingerprinting configuration for the new
workload
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Similarity-aware tuning

e Assume a source workload s was found for workload w

1) Tune the same significant parameters as for s
2) Retrieve Bayesian tuning model of s, T

)

3) Add w as a new task to T;

4) Suggest the next (tuned) configuration sample, cs, for w
)

5) Update tuning model with metrics from executing w with
configuration cs,,

ﬁ



Similarity-aware tuning

* Natural criteria for stopping the tuning

- e.g: Acquisition function maximum (Expected Improvement) drops
below 10%

* Method able to detect inaccurate similar workload matching

- Large difference between cost predicted by model and actual
execution, across multiple executions
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Experiments

pre-tuned (source) set
\ Input data sizes (DS)

Workload (Abbrev)

DS1
PageRank (PR) 5
Bayes Classifier (Bayes) 5
Wordcount (WC) 32
TPC-H Benchmark (TPCH) 20
Terasort (TS) 20

DS2
10
10
50
40
40

DS3
15
30
80
60
60

DS54
20
40

100
80
80

DS5
25
50

160

100

100

Units

million pages
million pages

GB

GB (compressed)
GB
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Tuned execution times (at convergence)
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Tuned execution times (at convergence)
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Time until finding best configuration
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Extended tuned (source) dataset for Bayes-DS3
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Tuning cost amortization (Bayes-DS3)
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Thank you! Ready for questions!

https://github.com/ayat-khairy/simtune

Interested in discussing off-line or colaborating?

akmf3@cl.cam.ac.uk
lucian.carata@cl.cam. ac.uk
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