

Accelerating the Configuration Tuning of Big Data Analytics with Similarity-aware Multitask Bayesian Optimization

Ayat Fekry, <u>Lucian Carata</u>, Thomas Pasquier, Andrew Rice

> akmf3@cl.cam.ac.uk lucian.carata@cl.cam.ac.uk

High-level problem overview

We want to:

- optimize configurations of data processing frameworks (Hadoop, Spark, Flink) in workload-specific ways.
- allow amortization of tuning costs in realistic settings:
 - evolving input data (increase in size, change of characteristics)
 - an elastic cluster configuration

High-level problem overview

We want to:

- optimize execution of workloads in data processing frameworks (Hadoop, Spark, Flink)
- allow amortization of tuning costs in realistic settings:
 - evolving input data (increase in size, change of characteristics)
 - · an elastic cluster configuration

When assuming repeated workload execution

- daily/weekly/monthly reporting
- incremental data analysis
- frequent analytics queries/processing

High-level solution overview

How:

- By incrementally tuning the configuration of the framework
 - per workload
 - determining and tuning only significant parameters
 - aim is to quickly converge to configurations close to optimum

High-level solution overview

How:

- By incrementally tuning the configuration of the framework
 - per workload
 - determining and tuning only significant parameters
- By leveraging existing tuning knowledge across similar workloads

High-level solution overview

How:

- By incrementally tuning the configuration of the framework
 - per workload
 - determining and tuning only significant parameters
- By leveraging existing tuning knowledge across similar workloads
- By carefully combining a number of established ML techniques and adapting them to the problem domain

Required puzzle pieces

- Workload characterization
 - 1) Workload monitoring
 - 2) Workload representations
 - 3) Similarity analysis

Required puzzle pieces

- Workload characterization
 - 1) Workload monitoring
 - 2) Workload representations
 - 3) Similarity analysis

- Similarity-aware tuning
 - 4) Multitask Bayesian Learning

Workload characterization

- Monitoring workload caracteristics & resource consumption
 - Metric examples:
 - number of tasks per stage, input/output size, data spilled to disk, etc.
 - CPU time, memory, GC time, serialization time, ...
 - Representing metrics in relative terms
 - GC time as proportion of total CPU time
 - Amount of shuffled/disk spilled data as proportion of total input data

Workload characterization

Workload representation

- Would like a low-dimensionality representation because it's difficult to come up with informative distance metrics in high-dimensional space
- We propose an autoencoder based solution, where the lowdimensionality representation is learned
 - offline phase based on historic execution metrics
 - resulting encoding/decoding model can be reused

Workload characterization

Similarity analysis

- Given new workload, find a source (already tuned) workload
 - Closest in encoded representation space (using L₁ norm)
 - Distance computed on a fixed fingerprinting configuration for the new workload

Similarity-aware tuning

- Assume a source workload s was found for workload w
 - 1) Tune the same significant parameters as for s
 - 2) Retrieve Bayesian tuning model of s, T_s
 - 3) Add w as a new task to T_s
 - 4) Suggest the next (tuned) configuration sample, csw for w
 - 5) Update tuning model with metrics from executing w with configuration cs_w

Similarity-aware tuning

- Natural criteria for stopping the tuning
 - e.g: Acquisition function maximum (Expected Improvement) drops below 10%

- Method able to detect inaccurate similar workload matching
 - Large difference between cost predicted by model and actual execution, across multiple executions

Experiments

pre-tuned (source) set \

Workload (Abbrev)	Input data sizes (DS)					Lloite
	DS1	DS2	DS3	DS4	DS5	Units
PageRank (PR)	5	10	15	20	25	million pages
Bayes Classifier (Bayes)	5	10	30	40	50	million pages
Wordcount (WC)	32	50	80	100	160	GB
TPC-H Benchmark (TPCH)	20	40	60	80	100	GB (compressed)
Terasort (TS)	20	40	60	80	100	GB

Tuned execution times (at convergence)

Source dataset: *-DS1

Tuned execution times (at convergence)

Source dataset: *-DS1

Time until finding best configuration

Source dataset: *-DS1

Extended tuned (source) dataset for Bayes-DS3

Source dataset: *-DS1 + Bayes DS2

Tuning cost amortization (Bayes-DS3)

SimTune source dataset: *-DS1
SimTune-extended source dataset: *-DS1 + Bayes-DS2

Thank you! Ready for questions!

https://github.com/ayat-khairy/simtune

Interested in discussing off-line or colaborating?

akmf3@cl.cam.ac.uk lucian.carata@cl.cam.ac.uk