
Big ideas paper: Policy-driven middleware
for a legally-compliant Internet of Things

Jatinder Singh
Computer Laboratory

University of Cambridge, UK
js573@cam.ac.uk

Thomas Pasquier
CRCS

Harvard University, USA
tfjmp@seas.harvard.edu

Jean Bacon
Computer Laboratory

University of Cambridge, UK
jmb25@cam.ac.uk

Julia Powles
Faculty of Law

University of Cambridge, UK
jep50@cam.ac.uk

Raluca Diaconu
Computer Laboratory

University of Cambridge, UK
rd530@cam.ac.uk

David Eyers
Dept. of Computer Science

University of Otago, NZ
dme@cs.otago.ac.nz

ABSTRACT
Internet of Things (IoT) applications, systems and services
are subject to law. We argue that for the IoT to develop
lawfully, there must be technical mechanisms that allow the
enforcement of specified policy, such that systems align with
legal realities. The audit of policy enforcement must assist
the apportionment of liability, demonstrate compliance with
regulation, and indicate whether policy correctly captures le-
gal responsibilities. As both systems and obligations evolve
dynamically, this cycle must be continuously maintained.

This poses a huge challenge given the global scale of the
IoT vision. The IoT entails dynamically creating new ser-
vices through managed and flexible data exchange.
Data management is complex in this dynamic environment,
given the need to both control and share information, often
across federated domains of administration.

We see middleware playing a key role in managing the
IoT. Our vision is for a middleware-enforced, unified policy
model that applies end-to-end, throughout the IoT. This is
because policy cannot be bound to things, applications, or
administrative domains, since functionality is the result of
composition, with dynamically formed chains of data flows.

We have investigated the use of Information Flow Control
(IFC) to manage and audit data flows in cloud computing;
a domain where trust can be well-founded, regulations are
more mature and associated responsibilities clearer. We feel
that IFC has great potential in the broader IoT context.
However, the sheer scale and the dynamic, federated nature
of the IoT pose a number of significant research challenges.

Keywords
Law, regulation, policy specification and enforcement, audit

1 Introduction and context
The Internet of Things (IoT) is a subject of wide publicity
and speculation. The ISO [4] describes the IoT as“An infras-
tructure of interconnected objects, people, systems and infor-
mation resources together with intelligent services to allow
them to process information of the physical and the virtual
world and react.” This broad vision embodies the concept of
ubiquitous/pervasive computing: the seamless integration of
sensor and actuation technologies into a wide-scale (global)
systems environment, capable of reacting appropriately to
changes in context to provide desired functionality.

The notion of the IoT is becoming mainstream: ‘bring-
ing the world online’ impacts individuals, groups, organ-
isations, governments, and society as a whole. The con-
nected systems infrastructure is envisaged as supporting a
vast number of different applications, in domains such as
smart cities, healthcare, traffic monitoring, energy efficiency,
and personal lifestyle management. All of these applications
are intended to be customisable to specific needs. They also
raise complex questions of responsibility regarding data, par-
ticularly given that sensors, IoT devices and their enabling
systems bear constant witness to our everyday lives.

At the same time, the IoT is a subject of increasing po-
litical and legal interest [38], not least because of the scale
of personal and/or otherwise sensitive data that it entails,
raising a range of private law issues, particularly under data
protection, privacy, contract and tort law. This is what
we envisage by “legally-compliant IoT”. For the avoidance
of doubt, our motivation is not to instrument the IoT for
criminal investigations or national security purposes. Sur-
reptitious actions, such as those by malicious parties and
government agencies, are beyond the scope of this paper.

Fig. 1 shows the big picture. Law and regulation, re-
flecting responsibilities and obligations, together with per-
sonal preferences, must be embodied in policy, which tech-
nical mechanisms must enforce system-wide. Such policy
must be continually aligned with evolving law and regula-
tion, and the audit of its enforcement, particularly regarding
data flow and processing, is necessary to demonstrate com-
pliance. Following this model, which is far from current
practice, the “big idea” we put forward is that a legally-
compliant IoT is a real possibility, enabled by decentralised
policy enforcement on a middleware foundation. Middleware
is an ideal basis for such functionality, as it operates across
system components in an application-independent manner.

Most current middleware focuses on enabling functional-
ity. Our idea is that middleware must go further, to enable
distributed compliance. This area is relatively unexplored
by the middleware community, but is crucial to moving for-
ward, particularly given the emerging regulatory landscape.

1.1 Dynamic processing chains in the IoT
Realising functionality in the IoT potentially involves long
processing chains, comprising many system components (see
Fig. 2), often representing a system-of-systems. IoT architec-
tures include physical devices (sensors, actuators); gateways

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

DB	 app	

app	process	
system	

obliga2ons	
preferences	

Enforcement		
point	

Data	flow	

Expanded	view
		

Trusted	
Infrastructure	

enables	

policy	

audit	

enforcement	

(OS/network)	
data			flows	

allows/prevents	

allows/prevents	

ve
rifi

es
	

&
	in
flu

en
ce
s	

determines	

Figure 1: A high-level overview of decentralised policy enforcement in the IoT

(hubs, phones, domain administration agents); and private/
hybrid/public cloud services, for storage, processing and an-
alytics. All might be managed by different parties, with dif-
ferent interests and obligations. The chain of components
delivering functionality might vary, even for instances of the
same application; e.g. a mobile application may interact di-
rectly with ‘things’ in the local environment, which vary
according to location. Further, the same components can
be used for different purposes, in different circumstances.

app# DB# analyser#
VM#

home#
manager#

gateway#

Figure 2: An IoT functional component chain

In the IoT, management policy relates to personal or or-
ganisational preferences, regulatory and contractual require-
ments, and context. Given the above, where system com-
ponents can be (re)used and interact (exchange data) in
unforeseen and customised ways, these policies must be as-
certained, respected and enforced throughout the highly dy-
namic environment. This requires supporting infrastructure
to provide the means for policy to set constraints and re-
configure system components, to ensure that interactions
properly accord with higher-level goals and obligations.

1.2 Data-centric access control, end-to-end
Traditional access controls (authentication and authorisa-
tion) tend to operate only within the scope of a partic-
ular application/system, with enforcement only at specific
points. While these controls are needed in the IoT, it is also
necessary for system infrastructure to enable the control and
management of data, end-to-end, under a consistent, contin-
uously enforced policy regime, as data moves along any pro-
cessing chains. Information Flow Control (IFC) augments
traditional access control by providing continuous, system-
wide, end-to-end flow control based on labelled properties of
the data. We propose that IFC should be vigorously inves-
tigated for use in the IoT to complement existing security
regimes, as explained further in §6 and §7.

Data analytics are an important part of the IoT, for man-
aging context (“detect/respond” event-based architectures),
and enabling new services and efficiencies. This is another
reason why data-centric controls are needed (in addition to
application/system-centric controls) that also facilitate data
provenance tracking. Once IFC is deployed, audit can easily
be supported since a record can potentially be made of every

attempted data transfer or access [68].

1.3 Summary and big idea
The IoT’s growth will be restricted unless a means is devel-
oped to allow parties to meet their legal obligations. We
argue that policies for data control must be consistently ap-
plied throughout the IoT, reflecting individual preferences,
rights, regulation and law. This requires data sharing to
be controlled both locally and within application/domain
boundaries, as well as when data flows through IoT system
chains (end-to-end). Since policy is often context-aware, and
can change/evolve, systems will require reconfiguration to
ensure that obligations continue to be met, under changing
circumstances. Audit, traceability and transparency tools
that can operate system-wide are important for account-
ability and demonstrating compliance. As regulation in-
creases for the IoT it becomes clear that a feedback loop
via technically-enforced policy is needed, as shown in Fig. 1.

Our big idea is for a legally-compliant IoT, where the sup-
porting infrastructure enables the enforcement of policy to
allow parties to demonstrably meet their responsibilities.

Middleware can support secure, managed (i.e. driven by
policy), data sharing [82]. There is a clear role for middle-
ware that enables dynamic, external reconfiguration, allow-
ing management policy to be applied within the federated,
decentralised and long-lived systems environment of the IoT.
As a starting point, we feel that IFC, which is a data-centric
security technology for continuous data flow control, shows
promise in enabling end-to-end enforcement. IFC is not a
new concept, but has not been applied in wide-scale dis-
tributed systems.

Clearly, any big idea must be grounded in experience with
technologies that show promise. In previous work [68,69] we
have demonstrated the potential of IFC in a cloud context;
however, extending the approach to the IoT is challenging,
given that cloud often represents a single administrative do-
main where trust can be well-founded, regulations are rela-
tively mature and associated responsibilities are clear.

In this paper, we present early ideas and challenges con-
cerning how IFC concepts, coupled with a reconfigurable,
distributed systems middleware could apply in heteroge-
neous, untrusted, dynamic, and wide-scale systems environ-
ments, as a means towards enabling a legally-compliant IoT.

2 IoT architecture
The term IoT is used broadly, in a variety of contexts, from
communication mediums, sensor networks and pervasive com-
puting, to HCI and more. We have highlighted the need for
dynamic, yet controlled, secure data sharing to realise the

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

broad IoT vision. This means that data flows must be man-
aged, even in the presence of an ever-greater number of sys-
tem components (representing communication endpoints)—
so-called hyperconnectivity—and the increasing instrumen-
tation of the physical world through ongoing improvements
in and deployments of sensor/actuator technology.

Our discussion is therefore in the context of interactions
(communication) between ‘things’, as shown in Fig. 1. In
line with the ITU [2] and ISO [4] definitions, we use thing to
refer to an entity, physical or virtual,1 capable of interaction
in its own right; thereby encompassing sensors, devices, ap-
plications/services (standalone or cloud-hosted), gateways,
etc. Much research has been carried out on communication
protocols for the IoT (e.g. to support low-powered devices
in an IoT context) and software is becoming available, such
as 6LoWPAN [57], COaP [80], etc. Policy at this lower-level
concerns communication and/or resource constraints; our
focus here is on higher-level data sharing.

2.1 Subsystems and gateways
Though many entities capable of communication make up
the IoT, not all operate as “first-class citizens”, because:
(1) They may be part of a subsystem that is bespoke or
closed, rather than open or interoperable, e.g. as part of a
legacy system or because of the manufacturer’s policy;
(2) They may be extremely resource limited; or
(3) They may be part of a self-contained administrative do-
main or network, limited in scope, e.g. a workplace, a propri-
etary sensor network or industrial control system, or simply
running behind a firewall [85]. This can be dynamic, in that
networks may be ad hoc (e.g. mesh-networks), and ‘things’
can be mobile, e.g. someone’s phone being directly accessible
when in public (through their mobile provider), but behind
a gateway when connected to an internal network at work.

We consider such entities to be part of subsystems that
participate in the IoT via gateways, see Fig. 2. Gateways
manage system boundaries, operating as ‘hubs’ that manage
interactions on behalf of the subsystems they front, and/or
providing capability (and policy) management services ap-
propriate for the local environment. We therefore consider
such gateways as ‘things’, as they represent a point in which
policy can be enforced. Conversely, a single device could be
considered as several ‘things’, e.g. a phone can host several
applications, each capable of direct, external communica-
tion, and therefore subject to separate policy regimes.

2.2 Cloud services within the IoT
Cloud services are increasingly playing a role in supporting
the IoT. A recent survey showed 34 out of 39 IoT architec-
tures investigated included cloud and/or centralised services
in some form [55]. Cloud services can be used:
(1) For processing and storage, especially when ‘things’ are
low-powered and/or mobile; for archiving, and for aggregat-
ing sensor and other data and performing analytics;
(2) To allow IoT data to be integrated with more traditional
services such as electronic health records;
(3) To operate as a coordinator/mediator, managing and
controlling ‘things’ as appropriate to context.

There are ongoing issues regarding the security of cloud
computing [90]. In [85] we discuss the security issues specific
to cloud-supported IoT. Our current research is exploring the

1Many definitions include ‘virtual’ aspects, as the delivery
of IoT services involves a number of software components.

potential of IFC to provide data protection with controlled
sharing in cloud computing, i.e. to manage intra- and inter-
cloud interactions. We outline this work in §8, as a basis for
exploring IFC for securing IoT data flows.

Any work aiming to incorporate cloud services into IoT
must take account of emerging cloud developments, such
as ‘cloudlets’ [78] and ‘droplets’ [26] that enable smaller,
mobile, and personal/application-specific clouds. These aim
at supporting emerging IoT environments, and can simply
be considered ‘things’ for the purposes of our discussion.

3 Need for managed data sharing
Much IoT research has focussed on specific applications,
and/or the technical aspects in bringing ‘things’ online, e.g.
protocols, radio and power management, etc. There has been
comparatively little attention on user-level security concerns
(or other aspects of control) across ranges of ‘things’, par-
ticularly relating to managing data sharing in this dynamic
world, where ‘things’ can be (re)used to realise new, possi-
bly unforeseen functionality. Six concerns are of particular
relevance when considering IoT data sharing.
Concern 1: IoT involves personal and sensitive data.
In the IoT, sensors will generate volumes of data relating to
many aspects of life. Indeed, highly personal data will drive
many envisaged IoT services. In contrast with traditional
IT, the data sources may be more diverse, ad hoc, mobile
and unmanaged. There is a great deal of law and regulation,
national and regional, focussing on personal data [54], and
the need for a sound legal basis (often, explicit consent) for
the collection, maintenance and use of information that is
identifiable to an individual. Commercially sensitive data
may also arise in the IoT; again, regulatory and contrac-
tual constraints may apply. Determining responsibility and
demonstrating compliance remains an ongoing issue [86].
Concern 2: IoT involves actuation. Actuation en-
tails physical, real-world impact. Error, malice or misman-
agement of actuation data flows (commands) can be catas-
trophic, and naturally entail legal consequences [35]. Flows
may be to vehicles and smart homes, and also software up-
dates for devices.
Concern 3: Policy persistence through chains. Be-
cause component interactions can be dynamically orches-
trated, and IoT-component chains can be long (Fig. 2), it can
be uncertain where data has flowed and how it is used. Once
data has left one’s control—i.e. it is ‘out of their hands’—it is
hard to trace. Generally, policies should persist throughout
the data’s entire lifecycle. This also helps with the amalga-
mation of data with different policies. To demonstrate that
policies have been respected it is necessary to record and
audit the flow of data.
Concern 4: Data quality and provenance. Qual-
ity of data relates to its source, e.g. user input, data from
an approved sensor, any intermediate processing operations,
and whether it is standards-compliant. Provenance concerns
making data lifecycles visible. Again, this makes it necessary
to record the flow of data.
Concern 5: Data aggregation, inference and analyt-
ics. Data in the IoT is diverse, coming from different users
and sources. Data may be benign in isolation, but sensi-
tive when combined; e.g. an anonymisation algorithm may
yield data that, when combined with other data, leads to
individual reidentification [62]. That is, subtle, unforeseen
inferences can arise. Data analytics (often on ‘big data’) is

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

commonplace, e.g. to profile people’s spending habits. IoT
increases the scope for data analytics, but with less visibility
over the outcomes [62]. Such issues motivate the need for
data flows to be managed and visible, system-wide.
Concern 6: Customisation and Context. ‘Things’ will
be used in different ways, for different purposes, e.g. a tele-
vision that monitors viewing habits, designed for targeted
advertising, may also allow a clinician to monitor someone’s
mental state. That is, the way ‘things’ are coordinated, i.e.
how and when data moves between ‘things’, can be cus-
tomised to achieve particular functional goals. Such con-
cerns are context-dependent, e.g. the data from someone’s
medical monitoring devices may flow only to their local per-
sonal applications and storage services. In an emergency,
“break-glass” policy overrides normal security constraints,
alerting emergency services and (say) a family member, and
replugging the sensor-data streams to make them available
to the emergency response team [81]. More generally, per-
haps a nurse should be able to access patients’ data only
when detected in the context of their homes. In both exam-
ples, security levels are adjusted—reconfigured—to accord
with changes in context. In practice, many adaptations will
be based on location and the local environment.

3.1 Policy for managing data
The IoT requires these concerns to be managed, in accor-
dance with preferences and requirements. Policy encapsu-
lates a set of concerns, defining the actions to take in par-
ticular circumstances to effect some outcome. Policy is of-
ten represented in rules and processes governing system be-
haviour, defining the actions to take when situations arise.

Much systems research on policy concerns lower-level as-
pects [88], such as resource allocation and/or quality-of-
service in network management. In contrast, in an IoT ar-
chitecture, policy must also capture higher-level (user) con-
cerns, because these drive the interactions involving data ex-
change, and must reflect the laws and regulations that
apply. Moreover, policies must be continuously aligned
with changing regulations and user preferences. Therefore,
to realise the IoT vision, policies must be dynamic in nature,
operating to regulate data exchanges. This may involve en-
forcing policies at various levels of the technology stack (see
§8.2.2). It is also important that auditing occurs so that
compliance with policy can be demonstrated and account-
ability established. Related work on policy is summarised in
§10, but there remain a number of open challenges regarding
the scale and scope of the IoT, as this paper explores.

4 Common security approaches
We now consider the extent to which the most common“off-
the-shelf” security mechanisms can meet the data sharing
concerns just described. §10 considers less established work.

Access control (AC) comprises authentication (identity)
and authorisation (the right to perform an action). For the
IoT, authentication schemes should apply system-wide (see
§9), meaning certificate-based (PKI) models could be used.
Authorisation policy might target a particular entity, a role,
and/or some aspect of context, e.g. parametrised roles can
capture details of an entity, its functionality and context [10].

AC clearly plays an important part in governing systems.
However, there are two related considerations for AC in IoT:

1. ACs are applied at specific Policy Enforcement Points
(PEPs), authenticating and authorising a particular action

(e.g. data exchange). While this protects the specific (peer-
based) interaction, there is generally no subsequent control
over data flows beyond the point of enforcement; and

2. AC tends only to be relevant within a particular ap-
plication and system context, e.g. the AC of a database is
different from that of the file system, and similarly they will
vary depending on the entity, e.g. the AC of a cloud ser-
vice provider targets different principals from those of the
tenant’s application it hosts. There are no continuous con-
trols beyond the PEPs, nor guarantees that any data pol-
icy regime applies consistently throughout the infrastruc-
ture. For example, database tables may be shared between
several applications. Although the applications enforce AC
with their users, they may not have the same AC policies
when operating on common data.

PKI. Public Key Infrastructure (PKI) can be useful in en-
abling a wide-scale security regime. One can envisage a
PKI where ‘things’ have private keys and public key cer-
tificates, signed by a certificate authority linking them to
their owners, who are also associated with certificates. De-
centralised trust models (a web-of-trust) are also possible,
assisting more ad hoc management by removing the need
for a central authority. X.509 certificates [30] can be used
for authentication/identification and authorisation [22] and
are widely available and well understood. PKI provides a
building block to be leveraged for a wider IoT infrastruc-
ture. Already, lightweight PKI schemes have been proposed
(e.g. [41]) that could help support low-powered IoT devices.

Encryption. There is a clear role for encrypted commu-
nication channels e.g. via Transport Layer Security (TLS),
or more lightweight versions for resource-challenged ‘things’
(§10). TLS relies on PKI and certificate authorities.

Application-level encryption (at data-item level) can se-
cure data beyond the application’s scope, but this raises a
number of issues. First, key management (allocation, revo-
cation and distribution) is non-trivial, particularly in the IoT
where data restrictions change dynamically. Second, much
of the IoT vision is of component chains that process, ag-
gregate and analyse data. Encryption at the data-item level
precludes certain processing services (e.g. in-cloud), unless
keys are distributed. There is ongoing work on homomorphic
encryption that will allow computation on encrypted data,
but is not yet practicable for wide-scale deployment [40].
Finally, there is no logging/feedback on when data is de-
crypted. This makes it difficult to discover when, where and
how data leaks occur, hindering audit and accountability.

Proxy re-encryption involves a semi-trusted proxy that
transforms encrypted data produced by one party into a
form decryptable by another, where the proxy cannot access
the plaintext [7]. This allows third parties to manage the
data of others, without having access to the content. This
can shift key management overheads away from lightweight
‘things’, and potentially enables more secure orchestrations.

Differential privacy regulates the queries on a dataset
and modifies result sets to balance the provision of useful,
statistical-based results with the probability of identifying
individual records [29]. This is useful for data analytics.

Hardware Based Trust. To establish trust in a system,
the hardware cryptographic capability provided by Trusted
Platform Modules (TPM) [11] is already used. Relevant
here is how TPM can guarantee the integrity of a plat-
form and its configuration, and also certify identity [70].

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

Intel SGX [3] provides an alternative to TPM-style trusted
hardware, by providing means to run a trusted computing
base in user space, above an untrusted OS kernel. Although
SGX can facilitate confidentiality and integrity of data on
a local machine, during external interaction the availabil-
ity of the service cannot be protected from the underlying
OS. ARM TrustZone [77] provides yet another design point,
between the previous two, providing hardware-isolated, se-
cure and insecure “worlds” in which the CPU operates. In-
tegrity guarantees are particularly relevant in ensuring the
security behaviour of a system, e.g. “can I trust this remote
host to handle my data?” In an IoT context, such guaran-
tees are applicable to ‘things’, e.g. helping to prevent imper-
sonation and providing trustworthy information as to their
specification and operational state, such as geographical lo-
cation [44].

Also relevant is remote attestation [47], which provides
the means to verify the integrity of a remote machine before
interacting. Such technology is increasingly common, e.g.
in virtual machines/containers on a cloud platform [17], em-
bedded systems [5], and mobile phones [61].

Summary. These mechanisms provide an essential foun-
dation on which to build the future IoT, with considerable
IoT research (see §10) dedicated to extending them. But
existing security techniques, by themselves, do not fully ad-
dress the concerns of §3, which arise from one or more of:
(1) the IoT’s vast scale; (2) the variable, dynamic nature of
the environment; and (3) the need for continuous enforce-
ment, system-wide, as data flows span a range of services
and administrative domains.

5 Middleware’s role in the emerging IoT
We have discussed the requirements for controlled, dynamic
data sharing in IoT and have considered security mechanisms
of relevance. In this section we expand on the key role of
middleware in IoT, with policy enforcement as the focus.
Event-driven systems embody policy-driven behaviour [88];
for example, Event-Condition-Action (ECA) rules can spec-
ify the circumstances under which systems need to be recon-
figured [87]. As mentioned, this was traditionally applied
to network management. Complex Event Processing (CEP)
engines have been developed for specific application areas,
such as financial trading. Machine learning is gaining promi-
nence, and can be used for learning and recognising signif-
icant patterns of events that can drive actions. Regardless
of how policy is described and actions decided, our concern
is the underlying mechanisms enabling policy to maintain
appropriate system behaviour.

5.1 The need for policy-enforcing middleware
We have argued that policy is central to realising the wider
IoT vision. Encoding policy in application logic is inher-
ently limiting, as the wider vision entails components being
(re)used, orchestrated and customised in various ways, in-
cluding entirely novel uses. Policy that tends towards build-
ing silos hinders this wider vision.

Middleware (MW) is a layer of abstraction that mediates
component interactions. As MW operates across compo-
nents, it is the natural location for integrating data manage-
ment mechanisms. This enables the means for application-
related policy to operate system-wide. This is important in
an IoT context because:

• Operating across ‘things’, MW can ensure the enforce-
ment of a common, compatible management regime
throughout the IoT provisioning chain; and

• In providing standard interfaces, MW allows ‘things’
to be developed without requiring policy to be defined
a priori, helping to avoid unnecessary operational silos.

For developers and designers, middleware-based policy en-
forcement means they are not burdened with maintaining
their own internal policy representation, thus removing the
impossible requirement to account for all possible uses and
operating environments for their component, and all its pos-
sible interactions. This is important for IoT, where ‘things’
are orchestrated to realise functionality. Also, policy man-
agement is made more tractable, since having fewer points
of enforcement reduces the propensity for errors, see §5.2.

In short, middleware should provide the mechanisms for
data security/management regimes to apply across systems,
throughout the IoT system supply chain. This is crucial for
realising the wider vision of the IoT.

5.2 Requirements of policy-driven MW
In considering policy enforcement, it is necessary to iden-
tify where control should be exercised. PEPs were intro-
duced in §4 for access control. PEPs exist throughout the
IoT (Fig. 1), with enforcement potentially occurring at each
step of a component chain (Fig. 2). This adds complexity
because:

• There is a need to enforce common policy at each con-
trol point along the entire path the data takes;

• As circumstances change, the policy at any of these
control points may need to be updated, and the chains
of flow may themselves need to change; and

• The decisions taken at each of these points must be
made visible for audit and provenance-checking.

To elaborate, these requirements involve:
Continuous, end-to-end policy enforcement. Secure,
reliable data sharing must be enforced end-to-end, through-
out the entire service provisioning chain, including any in-
termediate sub-chains.
Dynamic, context-aware reconfiguration. The pur-
pose of reconfiguration is to adapt the ‘always-on’ nature of
the IoT to ensure compliant behaviour in changing circum-
stances. Here, reconfiguration may take the form of:

• Setting the security/management regime to disallow/
allow particular data exchanges, i.e. setting up an en-
vironment, privileges, IFC security context (§6); or

• Proactively taking direct security operations, such as
initiating/ceasing connections, e.g. forcing data through
a sanitiser (§7), disconnecting an employee after their
shift, or preventing a rogue ‘thing’ from causing more
damage, e.g. by isolating or commands to shut it down.

In some circumstances, these may involve local reconfigu-
rations, in others, a change in security preferences must be
propagated through a range of different ‘things’.
Data provenance and audit. Providing transparency
and traceability by being able to track and audit the flow of
data throughout the system, including the policies applied,
reconfigurations initiated and interactions undertaken has
several purposes: (1) ensure data quality; (2) help identify
policy errors and encourage refinement; and (3) demonstrate
compliance and aid accountability.

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

6 Information Flow Control (IFC)
So far we have described the need for system-wide data man-
agement for the IoT, and the need for policy-driven middle-
ware. We now introduce IFC as a model for both tracking
and constraining information flows. We show IFC’s poten-
tial in an IoT context (§7), before describing how IFC inte-
grated with middleware allows wide-scale application of this
data-centric management approach, thus providing a solid
foundation for building a legally-compliant IoT.

IFC research dates back to the 1970s [28] in the con-
text of centralised military systems. Here, data was classi-
fied system-wide as public, confidential, secret or top-secret.
Later, decentralised IFC was proposed [60], and has formed
the basis of subsequent IFC research, including our work
on CamFlow [68, 69]. In an OS implementation, IFC can
be described as a data-centric, continuous (within the local
system), Mandatory Access Control (MAC) mechanism.

Most IFC models, including our own, relate to two data
properties: its secrecy and its integrity ; respectively, where
the data is allowed to flow to (per Bell and LaPadula [15])
and where it can flow from (per Biba [19]). These con-
cerns are represented by associating with an entity A, two
security labels S(A) for secrecy and I(A) for integrity; ac-
tive (e.g. processes) and passive (e.g. data) entities are la-
belled. Our IFC model uses labels that comprise a set of
tags, each tag representing a particular security concern (e.g.
S = {medical}, I = {sanitised}). Tags are defined as re-
quired in order to represent policy, for example, relating to
how personal medical data can flow. The security context
of an entity is defined as the state of its two labels, S and
I. The flow of data between entities composing the systems
is only allowed towards equally or more constrained entities
in order to guarantee for example, the proper usage of data.

These requirements are captured in the following con-
straints, which are applied on every data flow from an entity
A to an entity B:

A → B, iff {S(A) ⊆ S(B) ∧ I(B) ⊆ I(A)}

Creation flows. If an entity creates an entity (active or
passive), the created entity inherits the labels of its parents.
In OS-level IFC enforcement, examples of entity creation
include a process creating a file, and forking a child process.

Privileges for label change. In addition to their S and
I labels, certain entities may have privileges to add and/or
remove tags from these labels. An active entity may have
four privilege tag sets in addition to its security context.
These indicate its privilege to add and/or remove tags in
the sets to/from its S and I labels. Though a created entity
inherits the labels (security context) of its creator, privileges
are not inherited and have to be passed explicitly.

Tag Ownership. In some IFC models [59], the concept
of tag ownership is used to assign privileges to an entity.
Privileges must be passed on with care, especially a privilege
to remove a tag from a label (see below).

Security contexts. The security context of an entity
is its pair of labels, S and I. A security context domain
comprises entities with the same labels. The flow of data
can therefore be within a security context domain or into
a more constrained domain. Once data has flowed into a
more constrained domain, further flows are confined to that
domain or into increasingly constrained domains. For exam-

S = {s1}I = ∅

S = {s1, s2}I = ∅
S = {s3}I = ∅

S = ∅I = {i1}Declassifier/Endorser Entity

Allowed Flow

Prevented Flow

Figure 3: Declassification and endorsement

ple, Fig. 3 shows that data tagged as s1 can flow to an entity
tagged with S = {s1, s2} but then can only flow within the
S = {s1, s2} domain. Generally, building a system with
increasing constraints can lead to situations of “label creep”.

In practice, perhaps after a certain time has elapsed, secret
data may need to be made publicly available, or when data
has gone through an encryption or anonymisation process it
is allowed to flow more freely. To achieve these things, an
IFC system needs to support more complex flow policies.

Certain entities within an IFC system have privileges to
modify their labels to transfer information across security
contexts. An entity changing its security context is called
a declassifier when it modifies secrecy constraints, and an
endorser when it modifies integrity constraints.

Endorsers/declassifiers can be seen as trusted gateways
between security context domains, where IFC constraints
would otherwise prohibit a direct flow (see Fig. 3). Such
gateways can help ensure that regulation is enforced, e.g.,
medical data might only flow to a research domain if it has
gone through a declassifier that applies a specified anonymi-
sation algorithm. As well as such transformation of the data,
checks such as the time the data is authorised to be released
might also be needed. These gateway processes will play a
crucial role in enforcing policy at scale, as discussed in [66].

7 IFC’s potential for the IoT
We now present a medical home-monitoring example, to
show the potential of IFC in an IoT environment. For this
example we assume policy is defined by the hospital, in terms
of any access control credentials and IFC tags, and that mid-
dleware manages the components.

Fig. 4 shows a scenario where patients are discharged from
hospital to home monitoring. Each patient has a dedicated
Hospital Data Analyser to analyse and archive some of their
data, which is sent in certain circumstances. If this compo-
nent detects that a medical condition needs attention, hos-
pital staff are alerted and the home sensors may be actu-
ated to sample more frequently, as shown in Fig. 7. To en-
sure confidentiality, Ann’s device has secrecy tags medical
and ann. Only a component with these tags can receive
data from Ann’s device. The Analyser can only receive data
in hospital-standard format from consenting patients, indi-
cated by the integrity tags hosp-dev and consent . Ann’s de-
vice is issued by the hospital and is tagged hosp-dev . Fig. 4
shows that data from Zeb cannot flow to Ann’s Analyser,
failing both the secrecy and integrity checks (both of which
must be satisfied for a flow to occur).

Fig. 5 shows a component that sanitises non-standard in-
put. It acts as an endorser, being privileged to input non-
standard data tagged with e.g. I = {zeb-dev , consent}, con-
vert the data to the required format then change its security
context (a privileged action) so that Zeb’s data can flow to

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

 Ann’s Home Monitoring Sensors
 S = {medical, ann} I = {hosp-dev, consent}

check destination S has
 medical, ann

Zeb’s Home Monitoring Sensors
 S = {medical, zeb} I = {zeb-dev, consent}

 Ann’s (Hospital-based) Data Analyser
 S = {medical, ann} I = {hosp-dev, consent}

check source I has
hosp-dev, consent

X" Illegal flow [prevented]
destination S has no zeb
source I has no hosp-dev

Figure 4: Home monitoring information flow

his Hospital Data Analyser. This process chain, from sensor
through endorser to analyser is invoked dynamically when-
ever data should be transferred to the Analyser.

Note that even within this single application (home mon-
itoring), access control alone cannot capture the fact that
the sanitising component can receive data from Zeb’s non-
standard device when in one security context and can send
data to the analyser only after changing its security context.

3

Zeb’s Home Monitoring Sensors
S = {medical, zeb} I = {zeb-dev, consent}

 Zeb’s (Hospital-based) Data Analyser
S = {medical, zeb} I = {hosp-dev, consent}

 S = {medical, zeb} I = {zeb-dev, consent}
Device Input Sanitiser

S = {medical, zeb} I = {hosp-dev, consent}

Input Sanitiser sets up its
security context to read Zeb’s
non-standard data.
It changes its security context to
output data in standard format
to the Data Analyser.

Figure 5: Endorsement in IFC

Fig. 6 illustrates declassification. It shows a component
that generates statistics about the home monitoring initia-
tive. Patients are assured that their personal data will not
be discernible from the statistics; and regulation and policy
dictate that the statistical use must entail anonymisation
(according to some approved algorithm). We first see the
statistics generator labelled to be able to read the personal
data from all the patients. It carries out anonymisation
and statistics generation then changes its security context
to S = {medical , stats}, I = {anon}, before outputting its
results to management (similarly labelled). Management
cannot see patients’ data directly.

Again, note that standard access controls alone cannot
enforce the policy that only after the data is anonymised
can it flow to management. The IFC enforcement logs will
show that the statistics generator changed its security con-
text before passing on the data. If a leak of personal data is
claimed, the audit logs can be inspected to check for all flows
relating to that data, and the statistics generating compo-
nent’s algorithm can be investigated.

 Ann’s Home Monitoring Sensors
 S = {medical, ann} I = {hosp-dev, consent}

 S = {medical, ann, ……., zeb} I = {hosp-dev, consent}
Hospital Home-Monitoring Statistics Generator
 S = {medical, stats} I = {anon}

output can only go to appropriately labelled process

(standardised) data
from other patients

 Ward Manager
 S = {medical, stats} I = {anon}

Monitor changes
its security context
before output

The Ward Manager cannot read
individual patient data

Figure 6: Declassification in IFC

A high-level overview of the entire home monitoring sys-
tem is shown in Fig. 7. The patients’ Data Analysers (Ann’s
is shown) monitor their conditions and if a medical emer-
gency is detected, policy must come into force (red arrows)
to alert emergency services and to change the monitoring pa-
rameters by an actuation command. Here, an application-
aware policy engine triggers the middleware to set up the
required new connections and set the security regime for the
relevant components to ensure a compliant system. Manag-
ing IFC tags is discussed in §8 and as a challenge in §9.

Appropriately tagged components can be added, e.g. for
medical research into different diseases. The example could
be extended with patients needing to give consent for par-
ticular types of medical research, captured in the integrity
tags of their data, and in the components handling the data;
again an aspect of the challenges (in §9).

Ann’s Monitoring Sensors

Hospital Home-Monitoring
Statistics Generator

Ward Manager

data analyser
detects emergency

Zeb’s Monitoring Sensors

 Input Sanitiser

Ann’s Data Analyser Zeb’s Data Analyser

etc. ….

etc. ….

emergency
doctor

Medical Research
Statistics Generator

Medical
Researcher

Medical
Researcher

new
components

emergency
actuations

Figure 7: A home monitoring system

These examples motivate the use of IFC for protected data
sharing in the IoT to augment conventional (principal cf.
data-centric) access controls. Concerns 1, 2 and 3 of §3 are
addressed directly, and IFC contributes to meeting Concerns
4, 5 and 6, discussed in §9.

8 Work towards the vision
We argue that the IoT-wide application of IFC will assist
with issues of data management, and we have shown its
conceptual fit by means of an example. However, the vi-
sion of enabling a policy-driven, and therefore more legally-
compliant IoT must be grounded in practical realities. To-
wards this, we now describe our related systems experi-
ence of dynamically reconfigurable MW, through work on
SBUS [82], and on IFC for cloud, though CamFlow [69].

8.1 Dynamically reconfigurable MW
The importance of MW with reconfiguration capabilities,
towards enabling a more legally-compliant IoT, is that it
allows system components to be changed and adapted when
and where appropriate. This enables the system to accord
with the general governance regime.

As described in §5.2, in a data management context we
consider reconfiguration functionality as providing the means
to: (a) change security regimes of components to define the
bounds within which data flows take place; and (b) actively
effect security operations by establishing or ceasing interac-
tions, to directly initiate or prevent certain data flows.

Through our work on SBUS [82], we have long consid-
ered the practical aspects of reconfigurable MW. SBUS has
a general AC regime to govern interactions. This policy, en-
capsulating attributes of principals and context, is enforced

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

at the granularity of message type,2 and can be reconfigured.
Of particular relevance here is that SBUS not only sup-

ports system components reconfiguring their own state; but
importantly, allows reconfiguration actions to be issued by
third parties. That is, certain components can instruct oth-
ers to undertake reconfigurations and actions.

These third-party instructions are executed as though the
application had initiated them; though they occur inde-
pendently from the application logic of the component be-
ing reconfigured. The reconfiguration commands are issued
through the messaging system via control messages. This is
shown in Fig. 8. Reconfiguration commands are subject to
the same general AC regime, to ensure that reconfigurations
are only actioned when received from trusted third parties.

1.#Reconfigura.on#
#######command# Lsdfasasfsfasafsfsaafsasfas&

2.#Resul.ng#
##interac.on#

Policy&Engine&(PE)& Component&A& Component&B&
Lsdfasasfsfasafsfsaafsasfas&

Figure 8: Third-party reconfiguration: a control
message initiating a new interaction

The importance of this approach to reconfiguration is that
it allows components to be externally managed. This paves
the way for policy to apply across systems. That is, policy
actions can entail the issuing of reconfiguration instructions
to affect a range of components, in order to make the broader
system behave according to high-level goals.

Such capabilities will be crucial for enabling IFC to apply
at scale. Specifically, we anticipate reconfigurations will be
the means to change components’ security contexts, assign/
remove privileges, etc. ((a), above); and also to enable trans-
parent and dynamic system chain management ((b), above),
for instance, to automatically include various declassifiers/
endorsers and associated transformation operations to allow
data to flow across IFC security context domains [66].

In practice, we envisage policy engines, entities that en-
capsulate a range of related policies, monitor environments
and use the MW’s remote-reconfiguration functionality to
issue instructions to components, when/where necessary, to
ensure system behaviour remains appropriate over time. For
instance, in [81] we explored how policy engines in an as-
sisted living environment could reconfigure a range of system
components to enact an appropriate emergency response.

8.2 CamFlow: IFC for cloud
CamFlow [68, 69] realises the IFC model described in §6 to
provide the continuous protection of data as it flows end-to-
end through a PaaS cloud. This is achieved by enforcing IFC
(1) at the OS kernel level, for entities co-hosted in the same
OS instance, including for inter-process communication; and
(2) at a message-passing level, for entities hosted by different
OS instances (cross-machine). Therefore in CamFlow, IFC
policy is enforced across cloud-hosted applications.

An underlying assumption is that the IFC implementa-
tion (and therefore the cloud-provider) is trusted. We argue
that this is reasonable in a cloud context, because a cloud
provider is generally more trustworthy, has a greater tech-
nical capability, and is more visible to regulators than ten-
ants and their applications. Further, this means that cloud-
hosted parties can collaborate without trusting each other,

2Privileges, credentials and context are represented as X.509
certificates, managed and assigned using the standard mech-
anisms of the certificate infrastructure.

so long as they all trust the underlying IFC enforcement
mechanism of the platform.

8.2.1 OS-level IFC enforcement
CamFlow provides a kernel level IFC-enforcement capabil-
ity, to both enforce (control) and record data flows between
processes and kernel objects (e.g. files, pipes, etc.).3 This is
implemented as a Linux Security Module [92] (LSM). LSMs
use security hooks that are invoked on system calls to de-
cide whether a call is allowed to proceed. LSMs associate
with each kernel object a structure for storing security meta-
data comprising the object’s security context and privileges
(§6). Importantly, LSMs can be incorporated with limited
overhead, leaving the rest of the kernel unaltered and sys-
tem calls unchanged. This approach means IFC can be en-
forced without any application rework, intervention or even
awareness. Further, all data flows can be tracked to enable
audit, provenance and potentially demonstrate compliance
with contracts and regulations. We have shown the LSM
performance overhead to be minimal [68].

The LSM is simply the IFC enforcement mechanism. At a
higher level, in decentralised IFC, labels and tags are defined
for applications in order to reflect policy, and an application
instance must be set up in an appropriate security context.

8.2.2 Cross-machine enforcement
The LSM can only enforce IFC within the context of the
local OS. Unmediated external communication of labelled
processes is prevented, since the context of security across
the remote machine/network is unknown to the kernel.

Transfers across machines are therefore managed by a
trusted substrate. This substrate represents an extension
of our work in SBUS, where each communicating entity (ap-
plication process) is associated with a messaging substrate
process for external transfers. A substrate process is aware
of the security context of the application process it serves,
and enforces IFC in its dealings with the substrate processes
of other applications. Fig. 9 shows the architecture.

Camflow-LSM

User Space
Kernel Space

Application Process [S, I]

Kernel

Hardware

CamFlow-Messaging [S, I]

TPM

Message [S, I]

R
e
m
o
te

M
a
ch

in
e

Figure 9: CamFlow architecture

Enforcement occurs on the establishment of communica-
tion (messaging) channels. A channel is only established if
the policy allows, i.e. the tags of the components accord.
Specifically, this involves augmenting the standard MW AC
(principal and contextual policy) enforcement with a subse-
quent evaluation of IFC policy that encapsulates the data-
centric constraints. This is monitored throughout the con-
nection’s lifetime, where an entity changing its security con-
text triggers re-evaluation (enforcement). Note, the impacts
of externally reconfiguring IFC policy as described in §8.1
have not been explored, remaining an open challenge (§9).

Message-specific policy. Though CamFlow enables en-
forcement without application intervention, there may be
some circumstances where an application wishes to define
its own high-level IFC policy. Messages are strongly typed,

3See www.camflow.org for the LSM IFC implementation.

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

consisting of a set of named and typed attributes, and cer-
tain message types, or attributes thereof, can be more sen-
sitive than others; e.g. for a message type person, attribute
name is likely more sensitive than country .

To achieve these more granular controls, additional tags
can be defined that only exist at the messaging level, aug-
menting the OS-level security context. This is shown in
Fig. 10, where tag C is message-layer specific. Enforcement
may entail source quenching, in that messages/attribute val-
ues are not transferred if the tags of each party do not ac-
cord. This represents the integration and enforcement of
IFC by systems operating at different technical levels. The
ability for IFC policy to interoperate, and be enforced at
different levels is crucial for enabling IFC to apply at scale.

S:{A,B}	
LSM	

Analyser	

VM	2	

App	
LSM	

S:{A,B}	

S:{A,B,C}	
MSG	

App	 App	
LSM	

S:{A,B}	

S:{A,B,C}	
MSG	

LSM	
S:{A,B}	

VM	1	

IFC	enforcement	point	

Data	flow	

Figure 10: A messaging substrate (MSG) enforcing
an additional app-specific policy (tag C)

8.3 Tracking data flow: provenance and audit

F1 F2

F3

F4

P1

P2

A1 A2

Data itemProcess

Agent

Information Flow

Controlled by

Figure 11: Fragment of an audit graph

A data provenance system assists in understanding data
lifecycles: how was it created? when? by whom? how was
it manipulated? [23]. Provenance systems generate audit
graphs (a fragment is shown in Fig. 11), that represent the
data items (F), transformation processes (P) and agents (A)
(owners/managers) involved in generating and transferring
certain data. These graphs are useful in forensic analysis,
e.g. determining how a file was generated [51].

As both provenance and IFC concern the flow of informa-
tion between entities, the logs generated during IFC enforce-
ment are a natural source of provenance information. This
was explored in [68], where we showed how a popular graph
database (Neo4J4) and visualisation tool (Cytoscape5) can
be used to analyse IFC audit data. Logs can be made more
trustworthy by, for example, using hardware cryptographic
support [6] as discussed in §4.

It follows that in addition to controlling data flows, IFC
enforcement can produce provenance-like data that allows
information transfers to be audited. These audits can be
used to demonstrate system adherence to policy, and there-
fore compliance with various legal obligations.

4http://neo4j.com/
5http://js.cytoscape.org/

9 Moving forward
We have described the nature of IoT data sharing, consider-
ing its dynamic, ad hoc and federated nature, and the need
for data exchanges to be managed in order to ensure those
involved in the IoT comply with their legal obligations. Our
big idea is that IFC—enabling data flow-centric control and
audit—working with a middleware providing dynamic re-
configurable management functionality, offers real potential
towards realising the vision of a legally-complaint IoT.

9.1 From clouds to the IoT
Our work on IFC for PaaS clouds shows IFC as a viable tech-
nology. This, however, was based on the assumption that the
OS (cloud-provider) is trusted, possibly backed by hardware
(see [67], §4)—justifiable given cloud is often an environment
under a single domain of administrative control. Our initial
work indicates that IFC-encoded policy can be both simple
and expressive. We have also explored [86] how IFC might
address enforcement of, and compliance with, the emerging
legal/regulatory framework for cloud services [54].

This work has given us confidence that IFC has great po-
tential for better enabling IoT applications to be legally-
compliant, essential for realising the broader IoT vision.

9.2 IFC in meeting IoT data sharing concerns
Let us first reconsider the potential of IFC for addressing
the concerns presented in §3:
Concern 1 “IoT involves highly sensitive data”. Traditional
access control can be used for principal-based, point-based,
application-specific access checks. IFC tags are designed
specifically to augment this for continuous access enforce-
ment, including data secrecy and integrity aspects, as noted
for the patient home monitoring example (Figs. 5, 6, 7),
while offering potential for audit and provenance tracking.
Concern 2 “IoT involves actuation”. Hardware-based at-
testation and traditional access controls can be augmented
by IFC’s integrity tags, designed to ensure the ‘quality’ (e.g.
authority, accuracy, geo-location, etc.) of the actuation com-
mand. This allows not only the issuer and context immedi-
ately surrounding the command to be considered, but also
the chain of flows related to the command, including the
data (e.g. event patterns) that led to the actuation.
Concern 3 “Persistence of policy through composed things”.
Assuming policy permits some composition of components,
IFC can enforce all flows between them, and offer data pro-
tection beyond the lifetime of the composition (and the com-
ponents involved). This assumes that tags are allocated to
authorised components before flows can take place.
Concern 4 “Data quality and provenance”. IFC integrity
tags are designed to ensure and enforce data quality prop-
erties, e.g. as shown in Fig. 5 to indicate data has been con-
verted to a standard format. In general, integrity tags are
assigned after data has been validated. This might be after
hardware certification of certain properties (as discussed in
§4). For example, [44] uses hardware cryptographic support
and RFID tracking to certify the physical (GPS) location of
machines. A similar mechanism could be used to guarantee
sensor accuracy or other physical properties.

For data provenance, IFC checks are carried out on every
attempted flow. This facilitates the creation of logs record-
ing all attempted and permitted flows. Such information
provides the means to demonstrate that user policies have
been enforced and regulations have been complied with. It

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

also provides a basis for investigating attacks, the effects of
which may be confined by the IFC control regime.
Concern 5 “Data aggregation, inference and analytics”. The
problem of unintended and unforeseen inference is unsolved
and involves keeping a step ahead of ever-more sophisticated
algorithms. IFC can contribute by logging where data trav-
els, and when combined with other data [86]. Regulation is
involved in controlling analytics and IFC can assist in mak-
ing evident what data has been used, when and by whom.
Concern 6 “Customisation and context”. Declassifier/
endorsement processes allow data to flow between security
context domains, where data flows would otherwise be pro-
hibited. This allows constraints on data to change over
time, as appropriate to the situation. For example, after
a certain period of time, governmental data previously con-
sidered secret should become public. This involves changing
constraints, through a managed, explicit process of an entity
modifying its security context to declassify the data.

9.3 Research challenges
The discussion of §9.2 considers the potential of IFC for
meeting specific IoT concerns. The fundamental challenge
in realising the big idea is making IFC apply at scale, given:

1. The heterogenous nature of the chains of IoT compo-
nents, which exist across federated domains of admin-
istration; and

2. The IoT environments are long-lived, yet highly dy-
namic.

Therefore we believe MW with reconfiguration capabili-
ties has a clear role to play. To reiterate, MW can naturally
operate across system and administrative boundaries, man-
aging interactions, and therefore is highly appropriate for
integrating IFC functionality. By enabling external recon-
figuration, the security policy of components can be changed
and adapted to ensure that the system remains compliant
over time, and given changes in circumstances. This is cru-
cial for realising a legally-compliant IoT.

However, there are a number of significant challenges that
must first be overcome to realise the grand vision; given
these concern dynamism and cross-system aspects, we be-
lieve the middleware community is well placed to contribute.
We now summarise some key areas for research.

Challenge 1: Global policy. For security policy to apply
at scale, throughout the IoT, there is a need for a global pol-
icy representation, including tag and privilege descriptions,
and a universal means for reconfiguring components.

Current IFC implementations have privileged application
managers that can create application-specific IFC tags [69].
In general, privileged processes can arbitrarily create tags
that may be application-/system-specific, e.g. data in an EU
cloud may be tagged as such, to comply with regulation that
personal data must not leave the EU [39,86]. However, data
can only flow after negotiation and subsequent propagation
of tags, so this must be managed. Though some policies may
only be relevant within a particular scope (e.g. an applica-
tion), others may be globally applicable, and interactions
may occur with entities never before encountered.

In short, complexity is exacerbated when moving beyond
the single administrative domain of a cloud service. There-
fore, there must be the potential for (certain) security policy
to potentially apply to any ‘thing’, through changes in con-
text, wherever it lies, in any IoT processing chain. With tags,

one way forward may be approaches akin to DNS and/or
based on PKI, though overheads will be a consideration.

There is also the need for reconfiguration operations to
be standardised, to allow components’ security policy to be
changed where necessary, to align with broader, system-wide
requirements. Though we argue that the MW should pro-
vide the reconfiguration functionality, the precise definition
and nature of the operations must be globally understood.

Also relevant is that policy can apply at different levels of
abstraction; e.g. in our own work (§8), translation is neces-
sary between the kernel’s tag representation and that of the
messaging substrate that deals with other machines. This
requires consideration as more technologies are involved.
Challenge 2: Defining policy. Our discussion of the
viability of our big idea has focussed on the mechanism for
enforcement. However, for the vision to be realised, there is
a clear need for suitable, intuitive means for IFC tags, privi-
leges and reconfiguration policy to be expressed, so that obli-
gations can be captured and adhered to. Work concerning
policy authoring interfaces and templates can be relevant,
as is work on ontologies that relate to policy semantics. It is
also important to recognise that the tags may themselves be
sensitive e.g. where a tag implies a particular medical con-
dition. Therefore, the visibility of policy specifications may
also need to be controlled.
Challenge 3: Managing reconfiguration. We argue
that reconfiguration mechanisms are required given that sys-
tems are long lived and requirements will change over time.

Policy uses reconfiguration functionality to respond to
changing circumstances, where actions are taken on patterns
of events, e.g. detected by complex-event methods or ma-
chine learning. Therefore representing and managing context
is an ongoing challenge, particularly given the IoT’s scale.

Beyond context, of crucial importance is how these re-
configurations are properly managed—not least as ‘things’
can be reused, repurposed, mobile, shared, and usage can
vary. Investigation is required on how the continuous data-
centric control mechanisms resolve with more general AC,
and how reconfigurations can be used to set up security con-
texts for new applications and service-composition lifecycles,
and manage these for dynamic application. In particular,
IFC imposes a stringent regime, where deliberate behaviours
(endorsement/declassification) must be undertaken for data
to flow beyond defined boundaries. How the external recon-
figuration of IFC policy (label assignment, privileges) issued
by others should be managed to avoid components reaching
an inconsistent state, through the updated policy regime,
is an open challenge. Much work is required on the feed-
back loops between the policy, reconfiguration/enforcement
mechanisms and components.
Challenge 4: Authority and conflict. Given the IoT
is federated by nature, one issue concerns managing who
is able to define and maintain (reconfigure) policy. Some
‘things’ are owned by individuals, e.g. wearables; some are
shared, e.g. the occupants of a home may all have the right
to control certain ‘things’ therein; and some devices have
delegated ownership, e.g., a health service may loan devices
to patients, or a company to employees. There may also
be ad hoc situations, in which some authority is given tem-
porarily, e.g. only while physically in a particular location.

Related is that federation means that policy will conflict,
particularly as many of these considerations will be contex-
tual and policy can change. We have previously considered

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

dynamic policy conflict [83], including policy prioritisation
and override, but only where the conflict is within a single
administrative domain. Work is certainly required on policy
conflict resolution, e.g. standardisation, authoring interfaces
and/or mechanisms for runtime negotiation and resolution.

Challenge 5: Trusted enforcement. Clearly a pol-
icy enforcement infrastructure must be trustworthy, partic-
ularly if the goal is to assist with compliance. In §8.2 we
mentioned that a cloud provider is likely to be trusted and
therefore it may be reasonable that the OS kernel is part
of a trusted computing base for enforcing IFC, especially if
hardware-backed [67]. This can motivate sharing between
applications hosted in the cloud, as they need only trust the
cloud provider’s enforcement mechanism.

While this assists some forms of cloud-mediated IoT ser-
vices, enabling trust in the wider IoT environment is chal-
lenging. Federation means a variety of parties will own, con-
trol and manage system components, and the physical na-
ture of ‘things’ raises issues of system integrity (tampering).
Further, there may be dynamically-formed interactions with
components never before seen, managed by parties relatively
unknown. Hardware-based trust approaches, e.g. those de-
scribed in §4, show promise by improving the level of trust
and decreasing the size of the trusted software base [5,17,61].

Resource constraints are another consideration: some de-
vices may have a limited ability to store and enforce policy.
Of course, gateway components could be used to mediate
data flows. However, substantial work is required on what
aspects of policy management and enforcement can be dele-
gated, offloaded, distributed and federated, to meet resource
constraints, while ensuring adequate levels of trust.

Challenge 6: Audit and provenance for compliance.
Our goal of a legally-compliant IoT is based on the ability
to provide evidence that data management responsibilities
are being met. We described how IFC facilitates data prove-
nance, including when data is amalgamated with other data,
providing evidence for audit and compliance.

Though we have explored audit in a single administrative
domain (§8.3) managing provenance in IoT is difficult, due to
its federated and dynamic nature. Questions include: What
should be recorded, and when? How to deal with possi-
ble audit ‘gaps’, where components are no longer accessible,
intermittently connected or mobile? Are there any special
considerations where interactions are one-off and ad hoc?
How does provenance work, given the resource constraints
of ‘things’? When can logs safely be pruned? Can logs be
offloaded to others for distributed audit, and how should this
be managed? Can audit be reconciled with legal obligations
for non-disclosure, e.g. actions by law enforcement?

The above challenges, though significant, are within scope of
the middleware research community’s expertise. Our discus-
sion concerns the IoT, but work in such areas will assist in
building more legally-compliant systems in general, which is
of increasing importance given ongoing legal developments.

10 Related Work
Surveys have shown that issues concerning security, privacy
and data management are the key research challenges for
the IoT [8,34,89], and compliance is clearly related [85]. We
now summarise areas of related research.

10.1 Current IoT security research
The IoT raises security challenges at all technical levels [75].
There is much work on establishing secure communication
channels between ‘things’ [31,37]; standards for this purpose
are summarised in [46]. Others have designed access control
schemes specifically for IoT [25, 63], and some research fo-
cuses on lightweight authentication mechanisms [49,65,74].

These approaches, however, do not consider protecting
data beyond a particular interaction, i.e. do not provide con-
tinuous, system-wide guarantees. They also tend to focus on
adapting existing techniques (§4) to resource-constrained de-
vices, rather than devising new approaches towards general
IoT requirements. Such work is orthogonal to, but comple-
ments our vision, e.g. helping to integrate low-end devices.

It is generally recognised that high-level management con-
cerns, which at a systems level relate particularly to issues
of policy, reconfiguration and context management, remain
open issues given IoT’s massive scale [34,89].

10.2 Middleware for the IoT
Middleware has a clear role in the IoT [13] to assist with is-
sues of interoperability, service composition, heterogeneity,
layers of abstraction, security/privacy, context-awareness,
resource management, QoS, etc. In this big ideas paper, we
have established additional requirements for IoT, relating to
continuous system-wide policy enforcement to enable legal
compliance. These concerns align with the general directions
of emerging middleware, towards managing future complex
and dependable systems [43]. To place our idea in context,
we briefly outline the most relevant areas.

Service composition and adaptive middleware. Ser-
vice composition entails the combination of services (or sys-
tem components) to realise particular functionality [42]. This
typically involves taking an application level task (request)
and mapping it to a number of services [45], managing re-
source allocation and task distribution/ordering. Service
composition is important for IoT, where coordinating and
orchestrating ‘things’ helps meet functional goals. As such,
there is work, e.g. [33,91] on supporting service composition
at scale, accounting for high levels of heterogeneity.

Middleware allowing dynamic configuration and customi-
sation is known as adaptive [76] or reflective [48]. These ap-
proaches expose the current system configuration and state,
enabling reconfigurations to fulfil resource or QoS require-
ments [1]. Reconfigurations may be initiated by applications
themselves, or by managers of lower-level (e.g. network)/
shared infrastructure. Service composition is closely related,
as reconfigurations enable orchestrations to be effected.

This paper argues that reconfigurations are necessary for
IoT, to help manage the dynamic runtime environment. Both
adaptive and service composition aspects are useful in help-
ing to reconfigure and orchestrate components, to realise
particular functionality. However, there is also the need for
higher level controls through policy, not only to serve appli-
cation requirements, but broader policy requirements across
applications, systems and services.

Specifically, we see the need for complementary control
mechanisms that apply continuously. That is, data manage-
ment policy must operate beyond the scope of a particular
service composition to: (1) regulate the data flows within
any composition, and in, out and/or between them, system-
wide; and (2) account for any resulting data that may exist

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

well beyond the lifetime of the composition. Secondly, there
must be means to reconfigure, and adapt the policy itself.

Policy-based systems. There is some work on higher-level
policy enforcement [88]. Policy models, however, typically
involve imposing an architectural or environmental struc-
ture. For example, self-managed cells [27] were proposed to
bind a group of ‘things’ in order to manage the interactions
with other cells, and in [56] agents are grouped with trusted
controllers. Other constraints may be imposed, e.g. forcing
a particular form of interaction [53,83,93].

We have argued the case for a policy-driven IoT, however
IoT requires systems to be open and flexible. Thus, any
policy-based infrastructure must avoid imposing restrictive
modelling, design or interaction constraints, so that any re-
quired structuring is dictated by users. That is, it is im-
portant that data flow policy is enforced regardless of any
system structure, for the entire lifecycle of the data. Further,
having a policy model that is deliberately flat enables decen-
tralised and flexible, granular policy that can apply directly,
rather than be limited by layers of abstraction.

Sticky policies have been proposed to achieve end-to-end
control over data [21, 71], where data is encrypted along
with the policy to be applied to that data. To obtain the
decryption key from a Trusted Authority, a party must agree
to enforce the policy. Sticky policies aim at a high level of
abstraction, where policy definition and interpretation are
comparatively heavyweight. Further, the approach is trust-
based with no audit of compliance; there are no means to
ensure the proper usage of data once decrypted.

Note that translating law into a machine understandable
form is an active area of research of the computational law
community [16, 50]. Though such work typically does not
consider systems-level enforcement, it could play a useful
role in assisting policy definition.

Representing context. IoT is dynamic and data-driven,
therefore context is a key consideration [72]. Policy is inher-
ently contextual, defined to be enforced in particular circum-
stances. Therefore, a richer representation of state allows for
more granular and expressive policy.

A well-structured context model enables analysis and rea-
soning over policy behaviours, useful for determining op-
erational semantics, potential policy or contextual errors/
omissions. There are various approaches enabling complex
state representations [12, 18]. Ontological approaches show
particular promise [20, 36], by allowing context, tags, privi-
leges, etc. to be defined, based on semantics. However, given
the scale of IoT, managing context is an ongoing concern; in-
deed, agreeing a common vocabulary/coding scheme, even
for subareas of a heterogeneous IoT is challenging [64].

10.3 IFC in the IoT
A survey of IFC implementations is given in [9]. The ma-
jority of approaches concern enforcement within a local ma-
chine; very few consider IFC across machines [24,79,95], and
these tend to be limited in scope and/or impose a certain
form of system structuring (see [84] for more discussion).
Our own work (§8) is alone in proposing IFC for cloud com-
puting. To our knowledge, IFC has not been considered
for the widely-distributed, highly dynamic environment of
the IoT, which as this paper describes, entails a number of
significant research challenges.

10.4 Audit and provenance for the IoT
It is often acknowledged that audit will be important for the
IoT, but there is little work in the area. Policy enforcement,
coupled with audit for a widely distributed context, is yet
to be addressed.

Provenance tools associated with OSs or hypervisors [52,
58, 73] aim at logging data at a lower systems-level, useful
for system administration. Cloudopsy [94], focusses on the
visualisation of information flows for end users, for investiga-
tion of privacy issues, but without addressing enforcement.
SPADE [32] provides graph-based models of the flow of sci-
entific data in grid computing, following the Open Prove-
nance Model.6 The EU Compose project proposes a Prove-
nance Data Model for the IoT [14]; this reinforces the need
for confidentiality and integrity enforcement mechanisms.

11 Conclusion
System design is increasingly affected by the development
and application of law and regulation, particularly with re-
gard to data management. The future IoT will be a highly
distributed, dynamic, data-driven environment, yet compli-
ance with data management obligations must be demon-
strated during system operation.

We have argued that a new approach must be taken to
enable the big idea of a legally-compliant IoT. This is where
policy, aligning with legal obligations, is able to drive and
manage system behaviour, and where the infrastructure pro-
vides evidence to assist in demonstrating compliance.

Given that the IoT is driven by the exchange of data,
we feel that middleware with reconfiguration capabilities,
integrated with IFC, represents a promising way forward.
This is by providing the means to support managed and
adaptable data sharing policy, the continuous monitoring
and management of data flows, and logging for compliance
and audit. We have shown the viability of IFC as a systems
technology, in the context of a trusted cloud. However, the
scale and dynamic nature of the IoT means major research
challenges remain in a number of areas, to enable such tech-
nology to realise a legally-compliant IoT.

Though such research is, without doubt, relevant for max-
imising the IoT’s potential, we believe work in the areas de-
scribed would also identify new directions for investigation,
leading to a new, interdisciplinary general research topic:
“legally-compliant distributed systems”.

Acknowledgements
Work based in the Computer Laboratory was supported by
the UK Engineering and Physical Sciences Research Coun-
cil grant EP/K011510 CloudSafetyNet: End-to-End Appli-
cation Security in the Cloud, and Microsoft through the Mi-
crosoft Cloud Computing Research Centre.

12 References

[1] Combining heterogeneous service technologies for
building an Internet of Things middleware. Computer
Communications, 35(4):405 – 417, 2012.

[2] Overview of the Internet of Things. Technical Report
Y.2060, ITU Telecommunication Standardization
Sector, June 2012.

6http://openprovenance.org

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

[3] Software Guard Extensions Programming Reference.
(Intel, Technical Report 329298-001US), 2013.

[4] Internet of Things (Preliminary Report 2014).
(Technical Report, ISO/IEC JTC 1), 2015.

[5] N. Aaraj, A. Raghunathan, and N. K. Jha. Analysis
and Design of a Hardware/Software Trusted Platform
Module for Embedded Systems. Transactions on
Embedded Computing Systems (TECS), 8(1):8, 2008.

[6] R. Accorsi. BBox: A distributed secure log
architecture. In Public Key Infrastructures, Services
and Applications, pages 109–124. Springer, 2011.

[7] G. Ateniese, K. Fu, M. Green, and S. Hohenberger.
Improved Proxy re-Encryption Schemes with
Applications to Secure Distributed Storage. ACM
Transactions on Information and System Security
(TISSEC), 9(1):1–30, 2006.

[8] L. Atzori, A. Iera, and G. Morabito. The Internet of
Things: A survey. Computer networks,
54(15):2787–2805, 2010.

[9] J. Bacon, D. Eyers, T. Pasquier, J. Singh,
I. Papagiannis, and P. Pietzuch. Information Flow
Control for Secure Cloud Computing. Transactions on
Network and System Management SI Cloud Service
Management, 11(1):76–89, 2014.

[10] J. Bacon, K. Moody, and W. Yao. A Model of OASIS
Role-based Access Control and its Support for Active
Security. ACM Transactions on Information and
System Security (TISSEC), 5(4):492–540, 2002.

[11] S. Bajikar. Trusted Platform Module (TPM) based
Security on Notebook PCs-White Paper. Mobile
Platforms Group, Intel Corporation, pages 1–20, 2002.

[12] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems. International Journal of Ad
Hoc and Ubiquitous Computing, 2(4):263–277, June
2007.

[13] S. Bandyopadhyay, M. Sengupta, S. Maiti, and
S. Dutta. Role of middleware for Internet of Things: A
study. International Journal of Computer Science and
Engineering Survey, 2:94–105, Aug 2011.

[14] S. Bauer and D. Schreckling. Data Provenance in the
Internet of Things. In EU Project COMPOSE,
Conference 2013.

[15] D. E. Bell and L. J. LaPadula. Secure Computer
Systems: Mathematical Foundations and Model.
Technical Report M74-244, The MITRE Corp.,
Bedford MA, 1973.

[16] T. Bench-Capon, M. Araszkiewicz, K. Ashley, et al. A
History of AI and Law in 50 Papers: 25 Years of the
International Conference on AI and Law. Artif. Intell.
Law, 20(3):215–319, Sept. 2012.

[17] S. Berger, K. Goldman, D. Pendarakis, D. Safford,
E. Valdez, and M. Zohar. Scalable Attestation: A Step
Toward Secure and Trusted Clouds. In International
Conference on Cloud Engineering (IC2E). IEEE, 2015.

[18] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,
D. Nicklas, A. Ranganathan, and D. Riboni. A survey
of context modelling and reasoning techniques.
Pervasive and Mobile Computing, 6(2):161–180, 2010.

[19] K. J. Biba. Integrity Considerations for Secure
Computer Systems. Technical Report ESD-TR 76-372,
MITRE Corp., 1977.

[20] G. S. Blair, A. Bennaceur, N. Georgantas, P. Grace,
V. Issarny, V. Nundloll, and M. Paolucci. The role of
ontologies in emergent middleware: Supporting
interoperability in complex distributed systems. In
ACM/IFIP/USENIX Middleware 2011, Springer
LNCS 7049, pages 410–430, 2011.

[21] D. W. Chadwick and S. F. Lievens. Enforcing sticky
security policies throughout a distributed application.
In Workshop on Middleware Security, pages 1–6.
ACM, 2008.

[22] D. W. Chadwick, A. Otenko, and E. Ball. Role-based
Access Control with X. 509 Attribute Certificates.
Internet Computing, IEEE, 7(2):62–69, 2003.

[23] A. Chapman, M. D. Allen, and B. T. Blaustein. It’s
About the Data: Provenance as a Tool for Assessing
Data Fitness. In Workshop on the Theory and
Practice of Provenance. USENIX, 2012.

[24] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic,
A. Blankstein, J. Cowling, D. Curtis, L. Shrira, and
B. Liskov. Abstractions for Usable Information Flow
Control in Aeolus. In USENIX Annual Technical
Conference, Boston, 2012.

[25] A. Cherkaoui, L. Bossuet, L. Seitz, G. Selander, and
R. Borgaonkar. New Paradigms for Access Control in
Constrained Environments. In 9th International
Symposium on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC),
pages 1–4. IEEE, 2014.

[26] J. Crowcroft, A. Madhavapeddy, M. Schwarzkopf,
T. Hong, and R. Mortier. Unclouded Vision. In
Distributed Computing and Networking, pages 29–40.
Springer, 2011.

[27] P. De Leusse, P. Periorellis, T. Dimitrakos, and S. K.
Nair. Self Managed Security Cell, a Security Model for
the Internet of Things and Services. In 1st
International Conference on Advances in Future
Internet, pages 47–52. IEEE, 2009.

[28] D. E. Denning. A lattice model of secure information
flow. Communications of the ACM, 19(5):236–243,
1976.

[29] C. Dwork. Differential privacy. In Automata,
Languages and Programming, pages 1–12. Springer,
2006.

[30] S. Farrell and R. Housley. An Internet Attribute
Certificate Profile for Authorization. (IETF Technical
Report), 2002.

[31] O. Garcia-Morchon, S. Kumar, R. Struik, S. Keoh,
and R. Hummen. Security Considerations in the
IP-based Internet of Things. IETF, 2013.

[32] A. Gehani and D. Tariq. SPADE: Support for
Provenance Auditing in Distributed Environments. In
ACM/IFIP/USENIX Middleware, pages 101–120.
Springer, 2012.

[33] P. Grace, Y.-D. Bromberg, L. Réveillère, and G. Blair.
Overstar: An open approach to end-to-end
middleware services in systems of systems. In
ACM/IFIP/USENIX Middleware, pages 229–248.
Springer, 2012.

[34] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.
Internet of Things (IoT): A vision, architectural
elements, and future directions. Future Generation
Computer Systems, 29(7):1645–1660, 2013.

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

[35] W. Hartzog and E. Selinger. The Internet of
Heirlooms and Disposable Things. North Carolina
Journal of Law & Technology, 581, June 2016.

[36] S. Hasan and E. Curry. Thingsonomy: Tackling
Variety in Internet of Things Events. Internet
Computing, 19(2):10–18, Mar 2015.

[37] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh,
S. S. Kumar, and K. Wehrle. Security Challenges in
the IP-based Internet of Things. Wireless Personal
Communications, 61(3):527–542, 2011.

[38] W. K. Hon, C. Millard, and J. Singh. Twenty Legal
Considerations for Clouds of Things. (Queen Mary
University of London, School of Law, Technical
Report 216/2016), 2016.

[39] W. K. Hon, C. Millard, J. Singh, I. Walden, and
J. Crowcroft. Policy, legal and regulatory implications
of a Europe-only cloud. International Journal of Law
and Information Technology, 2016.

[40] D. Hrestak and S. Picek. Homomorphic Encryption in
the Cloud. In Proc. 37th International Convention on
Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages
1400–1404. IEEE, 2014.

[41] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza,
and K. Wehrle. Towards Viable Certificate-based
Authentication for the Internet of Things. In 2nd
Workshop on Hot Topics in Wireless Network Security
and Privacy, pages 37–42. ACM, 2013.

[42] N. Ibrahim and F. Le Mouël. A survey on service
composition middleware in pervasive environments.
International Journal of Computer Science Issues,
1:1–12, Aug 2009.

[43] V. Issarny and G. Blair. Guest editorial: Special issue
on the future of middleware (FOME’11). Journal of
Internet Services and Applications, (1):1–4, May.

[44] K. R. Jayaram, D. Safford, U. Sharma, V. Naik,
D. Pendarakis, and S. Tao. Trustworthy
Geographically Fenced Hybrid Clouds. In
ACM/IFIP/USENIX Middleware. ACM, 2014.

[45] S. Kalasapur, M. Kumar, and B. Shirazi. Dynamic
service composition in pervasive computing. IEEE
Transactions on Parallel and Distributed Systems,
18(7):907–918, 2007.

[46] S. L. Keoh, S. Kumar, and H. Tschofenig. Securing
the Internet of Things: A Standardization Perspective.
Internet of Things Journal, 1(3):265–275, 2014.

[47] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and
X. Zhang. Remote Attestation to Dynamic System
Properties: Towards Providing Complete System
Integrity Evidence. In Dependable Systems &
Networks (DSN’09), pages 115–124. IEEE, 2009.

[48] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The
case for reflective middleware. Communications of the
ACM, 45(6):33–38, Jun 2002.

[49] J.-Y. Lee, W.-C. Lin, and Y.-H. Huang. A Lightweight
Authentication Protocol for Internet of Things. In
International Symposium on Next-Generation
Electronics (ISNE), pages 1–2. IEEE, 2014.

[50] N. Love and M. Genesereth. Computational law. In
10th International Conference on Artificial
Intelligence and Law, pages 205–209. ACM, 2005.

[51] R. Lu, X. Lin, X. Liang, and X. S. Shen. Secure
Provenance: the Essential of Bread and Butter of
Data Forensics in Cloud Computing. In Symposium on
Information, Computer and Communications Security
(ASIACCS), pages 282–292. ACM, 2010.

[52] P. Macko, M. Chiarini, and M. Seltzer. Collecting
Provenance via the Xen Hypervisor. In TaPP.
USENIX, 2011.

[53] N. Matthys, C. Huygens, D. Hughes, J. Ueyama,
S. Michiels, and W. Joosen. Policy-driven tailoring of
sensor networks. In Springer, Sensor Systems and
Software, S-CUBE’10, pages 20–35, 2010.

[54] C. J. Millard, editor. Cloud Computing Law. Oxford
University Press, 2013.

[55] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma. A
gap analysis of Internet-of-Things platforms.
Computer Communications, 2016.

[56] N. H. Minsky and V. Ungureanu. Law-governed
interaction. ACM Transactions on Software
Engineering Methodologies, 9(3):273–305, 2000.

[57] G. Mulligan. The 6LoWPAN architecture. In
Proceedings of the 4th workshop on Embedded
networked sensors, pages 78–82. ACM, 2007.

[58] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun,
and M. I. Seltzer. Provenance-aware storage systems.
In USENIX Annual Technical Conference, pages
43–56, 2006.

[59] A. C. Myers. JFlow: Practical Mostly-static
Information Flow Control. In 26th SIGPLAN
SIGACT POPL’99, pages 228–241. ACM, 1999.

[60] A. C. Myers and B. Liskov. A Decentralized Model for
Information Flow Control. In Symposium on Operating
Systems Principles (SOSP), pages 129–142. ACM,
1997.

[61] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert.
Beyond Kernel-level Integrity Measurement: Enabling
Remote Attestation for the Android Platform. In
Trust and Trustworthy Computing, pages 1–15.
Springer, 2010.

[62] Nuffield Council on Bioethics. The collection, linking
and use of data in biomedical research and health care:
ethical issues. 2014.

[63] S. W. Oh and H. S. Kim. Decentralized Access
Permission Control Using Resource-oriented
Architecture for the Web of Things. In Conference on
Advanced Communication Technology (ICACT), pages
749–753. IEEE, 2014.

[64] M. Paolucci and B. Souville. Data interoperability in
the future of middleware. Journal of Internet Services
and Applications, 3(1):127–131, May 2012.

[65] N. Park, M. Kim, and H.-C. Bang. Symmetric
Key-Based Authentication and the Session Key
Agreement Scheme in IoT Environment. In Computer
Science and its Applications, pages 379–384. Springer,
2015.

[66] T. Pasquier, J. Bacon, J. Singh, and D. Eyers.
Data-Centric Access Control for Cloud Computing. In
Symposium on Access Control Models and
Technologies (SACMAT). ACM, 2016.

[67] T. Pasquier, J. Singh, and J. Bacon. Clouds of Things
need Information Flow Control with Hardware Roots

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

of Trust. In International Conference on Cloud
Computing Technology and Science (CloudCom’15).
IEEE, 2015.

[68] T. Pasquier, J. Singh, J. Bacon, and D. Eyers.
Information Flow Audit for PaaS clouds. In
International Conference on Cloud Engineering
(IC2E), pages 42–51. IEEE, 2016.

[69] T. Pasquier, J. Singh, D. Eyers, and J. Bacon.
CamFlow: Managed Data-Sharing for Cloud Services.
IEEE Transactions on Cloud Computing, 2015.

[70] S. Pearson. Trusted Computing Platforms, the Next
Security Solution. HP Labs, 2002.

[71] S. Pearson and M. Casassa-Mont. Sticky Policies: An
Approach for Managing Privacy across Multiple
Parties. Computer, 44, July 2011.

[72] C. Perera, A. Zaslavsky, P. Christen, and
D. Georgakopoulos. Context aware computing for the
Internet of Things: A survey. Communications
Surveys Tutorials, IEEE, 16(1):414–454, First 2014.

[73] D. J. Pohly, S. McLaughlin, P. McDaniel, and
K. Butler. Hi-Fi: Collecting High-Fidelity
whole-system provenance. In Proceedings of the 28th
Annual Computer Security Applications Conference,
pages 259–268. ACM, 2012.

[74] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, and
M. Ylianttila. Two-phase Authentication Protocol for
Wireless Sensor Networks in Distributed IoT
Applications. In 14th Int. Conf. on Wireless
Communications and Networking (WCNC), pages
2770–2775. IEEE, 2014.

[75] R. Roman, P. Najera, and J. Lopez. Securing the
Internet of Things. Computer, 44(9):51–58, 2011.

[76] S. M. Sadjadi and P. K. McKinley. A survey of
adaptive middleware. Michigan State University
Report MSU-CSE-03-35, 2003.

[77] N. Santos, H. Raj, S. Saroiu, and W. A. Using ARM
TrustZone to Build a Trusted Language Runtime for
Mobile Applications. In Proc. Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), pages 67–80. ACM, 2014.

[78] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The Case for VM-based Cloudlets in
Mobile Computing. Pervasive Computing, IEEE,
8(4):14–23, 2009.

[79] L. Sfaxi, T. Abdellatif, R. Robbana, and Y. Lakhnech.
Information Flow Control of Component-based
Distributed Systems. Concurrency and Computation:
Practice and Experience, 25(2):161–179, 2013.

[80] Z. Shelby, K. Hartke, and C. Bormann. The
Constrained Application Protocol (CoAP). IETF
Standards Track, 2014.

[81] J. Singh and J. Bacon. On Middleware for Emerging
Health Services. Journal of Internet Services and
Applications, 5(6):1–34, 2014.

[82] J. Singh, D. Eyers, and J. Bacon. Policy Enforcement
within Emerging Distributed, Event-Based Systems.
In Distributed Event-Based Systems (DEBS’14), pages
246–255. ACM, 2014.

[83] J. Singh, D. M. Eyers, and J. Bacon. Disclosure
Control in Multi-Domain Publish/Subscribe Systems.
In Distributed Event-Based Systems (DEBS’11), pages

159–170. ACM, 2011.

[84] J. Singh, T. Pasquier, J. Bacon, and D. Eyers.
Integrating Middleware and Information Flow
Control. In International Conference on Cloud
Engineering (IC2E), pages 54–59. IEEE, 2015.

[85] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers.
Twenty security considerations for cloud-supported
Internet of Things. IEEE IoT Journal, 3(3):269–284,
June 2016.

[86] J. Singh, J. Powles, T. Pasquier, and J. Bacon. Data
flow management and compliance in cloud computing.
IEEE Cloud Computing Magazine, Special Issue on
Legal Clouds, 2(4):24–32, July 2015.

[87] J. Singh, L. Vargas, J. Bacon, and K. Moody.
Policy-based Information Sharing in
Publish/Subscribe Middleware. In Policy. IEEE, 2008.

[88] M. Sloman. Policy Driven Management For
Distributed Systems. Journal of Network and Systems
Management, 2:333–360, 1994.

[89] J. Stankovic. Research Directions for the Internet of
Things. Internet of Things Journal, 1(1):3–9, 2014.

[90] S. Subashini and V. Kavitha. A Survey on Security
Issues in Service Delivery Models of Cloud
Computing. Journal of Network and Computer
Applications, 34(1):1 – 11, 2011.

[91] T. Teixeira, S. Hachem, V. Issarny, and
N. Georgantas. Service oriented middleware for the
Internet of Things: A perspective. In ServiceWave’11,
pages 220–229, 2011.

[92] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux Security Modules: General
security support for the Linux kernel. In Foundations
of Intrusion Tolerant Systems, pages 213–213. IEEE,
2003.

[93] A. Wun and H.-A. Jacobsen. A policy management
framework for content-based publish/subscribe. In
ACM/IFIP/USENIX Middleware, pages 368–388.
Springer, 2007.

[94] A. Zavou, V. Pappas, V. P. Kemerlis,
M. Polychronakis, G. Portokalidis, and A. D.
Keromytis. Cloudopsy: An autopsy of data flows in
the cloud. In Human Aspects of Information Security,
Privacy, and Trust, pages 366–375. Springer, 2013.

[95] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières.
Securing Distributed Systems with Information Flow
Control. In 5th Symposium on Networked System
Design and Implementation (NSDI 08), pages
293–308. USENIX, 2008.

Pre-print for ACM/IFIP/USENIX Middleware 2016 (http://dx.doi.org/10.1145/2988336.2988349)

