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Abstract—The rise of IoT has led to large volumes of personal
data being produced at the network’s edge. Most IoT applications
process data in the cloud raising concerns over privacy and
security. As many IoT applications are event-based and are
implemented on cloud-based, serverless platforms, we’ve seen
a number of proposals to deploy serverless solutions at the
edge to address concerns over data transfer. However, con-
ventional serverless platforms use container technology to run
user-defined functions. Containers introduce their own issues
regarding security – due to a large trusted computing base
–, and performance issues including long initialisation times.
Additionally, OpenWhisk a popular and widely used container-
based serverless platform available for edge devices perform
relatively poorly as we demonstrate in our evaluation.

In this paper, we propose to investigate unikernel as a solution
to build serverless platform at the edge, addressing in particular
performance and security concerns. We present UniFaaS, a
prototype edge-serverless platform which leverages unikernels
– tiny library single-address-space operating systems that only
contain the parts of the OS needed to run a given application
– to execute functions. The result is a serverless platform
with extremely low memory and CPU footprints, and excellent
performance. UniFaaS has been designed to be deployed on
low-powered single-board computer devices, such as Raspberry
Pi or Arduino, without compromising on performance.

I. INTRODUCTION

As edge devices often generate a large amount of personal

data; users expect secure and fast processing of the data, but

typically, distant cloud servers process the data produced at

the edge. Employing computation at the edge devices can

significantly minimise the amount of network I/O incurred by

sending data to remote cloud servers. Further, a centralised

solution may represent unnecessary privacy and security risks.

Edge computing [1] has emerged as a solution to bring

computation as close as possible to the source of data.

Serverless platforms [2] are an ideal technology to develop

the event-based solutions, required by a significant number IoT

applications. They let developers focus on the core functions

needed to build a service, abstracting away scaling, provi-

sioning and infrastructure management concerns. Developers

can combine stateless functions triggered by events (e.g.,

incoming IoT sensor readings) into complex workflows to

realise applications. This paradigm is often referred to as

Function as a Service (FaaS). Popular offerings include AWS

Lambda, Google Cloud Functions, Microsoft Azure Functions,

IBM/Apache’s OpenWhisk and Oracle Cloud Fn.

An ideal solution would be to deploy serverless platforms

at the edge [3] (e.g., within Internet Gateway) to handle

the stream of data coming from multiple IoT devices. Many

attempts [3–6] in this space consist of redesigning container-

based solutions used in the cloud to bring them to edge de-

vices. However, this is known to cause significant performance

problems on resource-constrained devices [7].

In this paper, we propose a more radical redesign, leveraging

instead recent unikernel technologies [8–10]. Unikernels are

tiny single address space operating systems (OSs) (<10MB

in size) executing on top of the hypervisor. Unikernels have

very low memory and CPU footprints and extremely fast boot

times. As far as pure performance is concerned, unikernels

outperform containers [11].

Unikernels also provide significant security advantages.

They are immutable by nature, run directly on top of the

hypervisor, and only take the parts of the OS that they need

in order to operate. This creates a significantly smaller trusted

computing base (TCB) when compared to container-based

solutions running on top of a fully fledge general-purpose

OS. Additionally, unikernels leverage hypervisor-level isola-

tion, while containers notoriously suffer from poor isolation

support [12].

Contributions:
• we design a unikernel-based Serverless Platform for edge

devices;

• we demonstrate its relative performance gain compared to

OpenWhisk, a widely popular open-source, container-

based solution;

• we demonstrate the practicality of the approach by build-

ing an environment monitoring system (we build on top

of the H2020 Smart Citizen Kit [13, 14]);

• finally, we propose an open-source implementation of the

work presented in this paper.

The remainder of this paper is organised as follows: § II

provides a technical background. § III describes the implemen-

tation of UniFaaS. § IV provides an evaluation by comparing

its throughput, memory and CPU usage when compared with

an alternative. § V demonstrates UniFaaS by applying it to

a real use case. § VII performs a comparison of unikernel and

container technology and discusses related work in the fields

of serverless and edge computing.

II. BACKGROUND

In this section, we provide technical background on server-

less platforms and the core technologies used to build our

solution: Unikernels and the Solo5 Hypervisor.
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Fig. 1. Shared resources for VMs, containers and unikernels [11]

A. Serverless Platforms

Serverless platforms allow the user to run code without

provisioning or managing servers with functionalities such

as scaling, load balancing, fault tolerance and availability

managed by the platform. Functions are triggered based on

conditions and can be chained in complex workflows to build

applications. Those functions are stateless and designed to be

short-lived. The billing model measures the number of times

a function is invoked and charges the customer accordingly.

Serverless platforms rely on a sand-boxed execution engine to

execute functions [2, 15]. Container technologies have been a

popular means to build serverless platforms which pose per-

formance concerns on resource-constrained edge devices [7].

B. Unikernels

A unikernel is a single-purpose and single address space OS

linking only the components from an OS stack it needs to run

a high-level application. This results in less memory wastage

and a smaller TCB, which improves security. Fig. 1 compares

the shared resources between VMs, containers and unikernels.

Unikernels are programs compiled into immutable kernels,

capable of running directly on a hypervisor. Unikernels are

viable because FaaS workloads are typically small, single-

use functions, whereas OSs are - by design - general-purpose

systems.

Unikernels are of two categories: language-based and

POSIX-based. Language-based unikernels (e.g. MirageOS and

IncludeOS) typically use a bespoke library OS written entirely

in the unikernel language of choice, such as OCaml [9],

C++ [8] or Haskell [16]. POSIX-based unikernels such as

OSv [17], HermiTux [18] and Lupine Linux [19] focus on

compatibility with conventional Linux applications. The main

difference between the two types is how specialised the uniker-

nel is. Language-based unikernels are highly specialised, fast

MQTT

REST

etc.
Job Queues Execution Units Data Stores

Orchestration Engine

Fig. 2. High-level UniFaaS architecture.

and secure, but lack compatibility with conventional systems.

Whereas POSIX-based unikernels offer a versatile and flexible

application, but they have a larger memory footprint, are

slower to boot and are less secure, due to their relatively

larger legacy TCB. Despite some of the inherent advantages

of unikernels for FaaS workloads, current serverless platforms

have not been designed to run unikernels [20].

In the proof of concept system presented in this paper

we leverage the MirageOS [9] unikernel. MirageOS adopts

a defence-in-depth approach. The compile-time specialisation,

use of type-safe languages, hypervisor security measures and

toolchain extensions provide a high degree of security.

C. Solo5 - Hypervisor

Solo5 [21] is a sandboxed, re-targetable execution for

unikernels, enabling extremely fast booting with the ability

to debug them. Solo5 provides a minimalist, legacy-free in-

terface with bindings to a) microkernels (Genode), separation

kernels (Muen); b) virtio-based hypervisors; and c) monolithic

kernels (Linux, FreeBSD, OpenBSD). On monolithic kernels,

a tender1 is used to sandbox the unikernel strongly. Hardware

virtualised tender (hvt) uses hardware virtualisation as an

isolation layer. In contrast, Sandboxed process tender (spt)

uses process isolation with seccomp-BPF [22] as an isolation

layer. Solo5 has small implementation size (around 3 kLOC)

and fast startup time (Solo5 hvt/spt < 50 ms; QEMU Linux

VM around 1000 ms; Cloud-managed VMs several seconds).

In this paper, we leverage Solo5 hvt to run unikernels.

III. IMPLEMENTATION

The core components required to build a serverless platform

are [15, 23]:

• Execution Units;

• Orchestration Engine;

• Job Queues;

• Datastore.

Fig. 2 shows the architecture of UniFaaS. We discuss these

components in the rest of this section.

1Tender is the component responsible for “tending to” the guest at load/run
time. In the case of hvt, the tender is loosely equivalent to QEMU. In the case
of spt, solo5-spt tender loads the guest into memory; install a seccomp
sandbox and passes control to the guest.
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A. Execution Units

The execution units are responsible for executing the user-

defined functions on demand. UniFaaS uses MirageOS [9].

We run these unikernels on top of the Solo5 hypervisor [20]

which provides debugging facilities (close to those experi-

enced when debugging standard processes on Linux) and

performance optimizations, tailored to support unikernel VMs.

The developer writes a stateless function that will be run as

a unikernel. The developer can leverage UniFaaS’ provided

library to interact with the elements of our platforms. For

example, UniFaaS’ API abstracts how to get, set, push,

pop and increment values to and from the event queues

and datastores, or to send data to remote end-points.

B. Job Queues

Serverless workloads are event-driven and trigger functions

executions as the job queues are filled (a given execution unit

is associated with at least one job queue). UniFaaS operates

under a Pub/Sub messaging pattern [24], which allows for

the decoupling of producers and consumers. Functions pop

events from the queue they listen to and process them, and

can push events to other queues. In addition to user-provided

functions, remote interfaces (e.g., REST API, MQTT etc.)

listen to specific queues and push/pull events received from or

to be sent to the outside world (to send and/or receive data).

The job queue system is implemented using a Redis server.

Access to the job queue system is restricted to a subnetwork

only accessible to our executions units and the previously

mentioned external interface.

C. Datastore

Although not essential to all workflows, we provide access

to datastores that allow us to develop more complex applica-

tions. Indeed, as execution units are stateless, the datastores

can be used by applications to maintain states. We provide a

key-value datastore in our current implementation – although

providing access to an SQL database could be possible.

We leverage, once again, Redis’ in-memory, key-value store

function and asynchronously back up the database to disk. The

platform states are restored during boot.

D. Orchestration Engine

The orchestration engine is the core component of

UniFaaS glueing all those pieces together. It is responsible

for pairing external interfaces to event queues, instantiating

execution units as required, and managing datastores. In this

section, we particularly discuss how execution units are man-

aged as the other tasks are more trivial.

Monitoring the event queues: The orchestration engine

monitors the event queues to decide when new execution units

need to be instantiated or when execution units need to be shut

down. To do so it instantiates triggers within the event queues.

These triggers notify the orchestration engine when a new

element is pushed to an empty queue, when a queue is emptied

or when a queue size reaches a certain threshold. These events

drive the logic behind new execution instantiations and are

fully customisable to improve performance.

Instantiating an execution unit: One of the key features of

serverless platforms [23, 25–28], is the ability to scale func-

tions automatically depending on the workload. On noticing a

trigger, UniFaaS follows a sequence of checks before a new

execution unit is instantiated

1) Check that the maximum number of execution units al-

located to a given workflow and/or step is not exhausted.

2) That no similar event queue trigger has been witnessed

within a given grace period. This is, for example, to give

time to a newly-spawned execution unit to boot and start

processing events on its associated queue(s).

3) MirageOS unikernels use TAP devices (i.e., virtual net-

work devices) to enable networking capabilities. Each

unikernel requires a unique TAP interface to function

correctly. UniFaaS manages a list of available TAP

devices and assigns one to a unikernel before it ex-

ecutes and frees it when the corresponding unikernel

terminates.

When/if these steps are satisfied, a new execution unit is

instantiated. We effectively implement a “Static Threshold-

based” rule for auto-scaling [29] where the number of exe-

cution units associated with a job queue is a function of the

job queue size. We note that, given the modular nature of

UniFaaS implementation, it is possible to implement other

and potentially more complex scheduling algorithms.

Terminating an execution unit: UniFaaS monitors running

execution units to keep an up-to-date record of the number of

running instances, set the associated grace period to zero when

an execution unit is terminated, and account for available TAP

interfaces. UniFaaS’ working assumption is that execution

units are good citizens and terminate when their respective

event queue(s) is empty. However, when an execution unit

hangs or stays idle on an empty queue, it is forcefully

terminated.

Similarly, if a given workflow step reaches its maximum

number of execution units and the queue continues to grow, the

entire workflow is terminated, and an error is logged (this is to

avoid a particularly heavy workload exhausting all resources).

The developer should either allocate more resource to this

particular workload, look for a bug and/or attempt performance

optimization.

E. Debugging

Execution units stdout outputs can be logged and anal-

ysed to understand a workflow/step behaviour. However, de-

bugging serverless platforms in such a fashion is notoriously

difficult [26, 30]. Further, as unikernels are isolated, self-

contained execution units, they further increase the complex-

ity of debugging activities [20]. In order to alleviate those

issues, we leverage the Solo5 hypervisor as it provides gdb
and dumpcore modules to allow for live and post-mortem

debugging of Solo5-based execution units.
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TABLE I
TABLE SHOWING THE DIFFERENT IOT DEVICES USED IN OUR

EXPERIMENTS.

Device Generate/Consume Data Invocation Pattern
Philips Hue Connected Bulb Consume Burst

Belkin WeMo motion sensor and switch kit Both Burst
Nest smoke-alarm Generate Repetitive

Withings Smart Body Analyzer Generate Single

F. Limitations

MirageOS unikernels do not have TLS support for HTTPS

connections. We communicated with the MirageOS team [31]

who are actively working on this. We plan to implement TLS

support as soon as the feature is available.

IV. EVALUATION

For evaluation of UniFaaS, we performed benchmark tests

monitoring the resource usage on different sets of hardware.

Two different hardware were used: 1) x86-64 machine
with 16GB RAM, a 6 cores i7 running at 4.1GHz; and a 2)

RPi 4 Model B with 4GB RAM. The evaluation compares

the performance and resource usage of UniFaaS with the

same, or equivalent workload using Apache OpenWhisk (we

followed RPi 4 guideline provided by IBM employees [32])

on the same sets of hardware. The evaluation aims to address

the following questions:

Q1: Is UniFaaS more efficient than OpenWhisk?

Q2: Does the UniFaaS platform operate with a small foot-

print?

A. Evaluation Workloads

Due to the proprietary nature of current serverless platforms,

there is little public information on production workloads [33].

Sharhad et al. [33] categorised the types of workloads typically

used on the Azure platform. From this study, we selected

applications relevant to IoT devices at the edge. In Table I,

we show the different smart-home IoT devices [34] which are

used in our evaluation workloads. Our workloads are as follow:

Lights: On receiving data from the Belkin WeMo motion

sensor at the front door, UniFaaS sends the appropriate signal

to the “Philips Hue Connected Bulb” to turn on/off the lights

in a house.

Daily Health Statistics (DHS): UniFaaS output daily,

weekly and monthly progress every day after measuring

weight by a “Smart Body Analyzer”.

Alert: Send an alert message when smoke is detected by the

“Nest smoke-alarm” in the house. UniFaaS reads the data

and sends an alert to the user if the measured value is above

a certain threshold.

Fridge Door Count (FDC): The workload consists of incre-

menting a counter every time the smart fridge door is opened

and producing usage habits for the user.

Additionally, another workload used in this evaluation is

calculating the value of the Fibonacci sequence at a given

index. This workload is often used for benchmarking the

performance of serverless platforms [35–37].

B. Processing performance

In this section, we compare UniFaaS and OpenWhisk
processing speed on both the x86-64 machine and the

RPi 4. We trigger an event one hundred times and report

the average time taken to process those events. The results are

reported in Fig. 3. Fig. 3(a) shows that UniFaaS outperforms

OpenWhisk.

More interesting are the results on RPi 4 shown in

Fig. 3(b). We notice that UniFaaS clearly outperform

OpenWhisk, but OpenWhisk’s performance are unexpect-

edly poor. Fig. 4 gives a clearer explanation on what is

happening. While a majority of events are processed between

11 and 100ms, one event took up to 52s, with a significant

proportion taking between 1s and 10s. OpenWhisk 90th

percentile is ∼10s compared to UniFaaS ∼227ms. We

tried different configurations, but OpenWhisk had trouble

performing consistently on our resource-constrained RPi 4.

The issue seems to be related to container instantiation being

sporadically extremely slow. This makes OpenWhisk a poor

choice for applications where decent and consistent response

latency matters.

C. Memory Footprint

Mohanty et al. [38] recommend the use of simple workload

to understand the performance of serverless platform. The

FDC workload was selected to test UniFaaS due to its

simplicity. We increase the workload as to force the system to

spawn more execution engines (from 1 to 10) and measure the

total memory consumption of the system (including UniFaaS
itself and all other background task on the system). We average

the results over 10 runs. The results are presented in Fig. 5. We

can clearly see that the impact of additional execution engine

is minimal on the memory footprint (this is not surprising as

a unikernel has only a size of a few MB). Higher variance

in memory consumption on x86-64 machine is due to the

higher number of background task on our x86 server.

D. CPU Footprint

We proceed similarly to measure the CPU footprint of

UniFaaS. The results are presented in Fig. 6. We can see

a small linear growth as the number of execution engine

increase from 1 to 10. UniFaaS is efficient and does not

impose high CPU load, which is ideal for resource-constrained

environments.

E. Boot Latency

In this experiment, we measure the time between the

orchestration engine instantiating a new execution unit, and

when the execution unit becomes available to process data.

For OpenWhisk we report both cold and warm boot.

The results in Fig. 7 show that the unikernels used by

UniFaaS are three times faster to boot than warm containers

used by OpenWhisk. Furthermore, on average UniFaaS can

boot execution units in 11ms, which is an order of magnitude

faster than cold containers which take 135ms to boot.
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V. USE-CASE

To demonstrate the practicality of the proposed solution,

we deployed UniFaaS in our indoor pollution monitoring

system.

The Smart Citizen Kit (SCK) [13, 14] is a result of the

iSCAPE (Improving the Smart Control of Air Pollution in

Europe) research and innovation project. The iSCAPE project
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Fig. 6. Average CPU usage of UniFaaS when running the FDC workload
on RPi 4 4 and x86-64 machine
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Fig. 7. Average times taken to boot a function on UniFaaS and OpenWhisk
on the x86-64 machine

explored problems surrounding air quality and carbon emis-

sions in relation to climate change. SCK measures air temper-

ature, relative humidity, noise level, ambient light, barometric

pressure, and particulate matter (PM). Technology enthusiasts

and environmentalists utilise SCK in a variety of ways, for

example, to understand indoor/outdoor air pollution and cor-

relation with health issues or to resolve noise issues due to

nightlife activities [39].

In our usecase, we monitor the value of carbon dioxide

(CO2); if it is around 1000 - 2000 ppm, a person might
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Fig. 8. Our RPi gateway and our Smart Citizen Kits.

CO2 Sensor

log

SlackThreshold Slack Alert

Logger

Ext. endpoint Function Storage

Fig. 9. Our CO2 monitoring workflow.

complain of drowsiness and poor air. CO2 can be decreased by

opening the window for cross-ventilation. Our usecase demon-

strates UniFaaS functionality by processing data generated

by SCK on the RPi 4 and sending alerts to users (in our

office environment, we decided to send the alert to our group’s

Slack). The devices used for our experiment are shown in

Fig. 8.

We illustrate the workflow associated with this scenario in

Fig. 9. The data captured by the SCK is received through an

MQTT front-end and pushed to an event queue (see § III). Con-

sequently, UniFaaS spawns (if needed) a new execution unit

to execute the Threshold function which retrieves events

from the event queue, one-by-one, parses each event’s message

and extracts the sensor value, compares the value to a prede-

fined threshold and pushes an event to another event queue.

The Slack Alert function, is associated with this queue.

This function, on reception of events, parses each event’s

message and sends an alert to the Slack organization/channel

pair specified in the event. The Slack function can be

shared across multiple workflows as required. The Logger
function is used to store sensor readings for future analysis,

for example, as part of a research project on indoor pollution.

We evaluated the performance of this usecase workflow.

It takes on average 192.64 ms for UniFaaS to process an

event, while OpenWhisk takes 534.26 ms. Additionally, due to

UniFaaS’s very low boot overhead (see § IV-E) the variance

between execution is only 20.79ms while OpenWhisk exhibits

a 227.83ms variance. These results are consistence with our

evaluation in § IV.

VI. LIMITATIONS AND FUTURE WORK

Our solution is an early academic prototype and has been

evaluated in a limited setting. We are planning to integrate

the proposed unikernel-based approach into an orchestration

framework such as Kubernetes. The orchestration will help

evaluate our solution in a more complex and realistic IoT

testbed.

Further, re-implementing existing business logic to run on

MirageOS requires to rewrite applications in OCaml. It may

be represents a significant engineering effort preventing wider

adoption of our proposed solution. We are exploring recent ad-

vance in unikernel technology, where legacy OS such as Linux

are leveraged to produce unikernels compatible with existing

code base (e.g., Lupine Linux [19]). An alternative approach

would be to explore the use of transpilation techniques [40]

to convert existing code-base. We plan to explore solutions to

convert existing container-based FaaS applications to unikernel

ones with minimal user involvement.

VII. RELATED WORK

A. Unikernels vs Containers

Several papers compared unikernels with containers [11, 41–

44]. Early comparisons [41, 44] used OSv [17], a POSIX-like

unikernel. However, supporting POSIX compatibility comes

at a cost. Indeed, OSv unikernels achieve approximately half

of the memory throughput compared to containers, VMs and

native [44].

However, recent comparisons between OSv unikernels and

containers offer significantly different results. Goethals et

al. [11] performed benchmark tests in different languages

(Go, Python, Java). They found that OSv unikernels are 38%

faster than containers when running Go applications and 16%

faster when running Java applications. Our work confirms

that unikernels can significantly outperform container-based

solutions and are a prime technology choice.

B. Edge serverless platforms

Several works combine cloud and edge resources [3, 4, 45].

For example, Aske et al. [45] monitors the status of serverless

platforms and makes an informed choice of where to execute

the function: locally or on a remote cloud service. However,

this requires the local serverless system to be compatible with

the serverless industry platform. Consequently, they implement

OpenWhisk as the local serverless platform and outsource

to IBM Bluemix and AWS Lambda. Their results show that

their system consistently executes work on the best provider,

which is often locally. Furthermore, when the local platform

experiences a significantly heavy workload, their system easily

outsources the work to the next-best available platform. Such

an approach can be seen as complementing our current pro-

posal, either by supporting unikernel-implemented functions

on the cloud platforms (we showed superior performance to

OpenWhisk on X86 hardware § IV) or by leveraging POSIX-

like unikernels [17–19] as local execution units.

Hall et al. [7] propose to use WebAssembly rather than

containers. Hall et al. observe similar poor performance of
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container-based solutions, as containers need to be shut on

and off due to limited memory (see § IV-B). Hall et al. rely

on Google V8 as their source of isolation. This provides much

weaker guarantees than the hypervisor-based techniques that

UniFaaS leverages. We also note that javascript applications

can be used to build unikernels (see https://ops.city/ as an

example).

VIII. CONCLUSION

In this paper we demonstrated that unikernels are a viable

alternative to containers when developing serverless platforms

aimed at edge devices. Our UniFaaS platform outperforms

OpenWhisk in processing speed, memory consumption and

boot-time. We deployed this platform with our Smart Citizen

Kit as a use case, thus demonstrating its practicality as a tool

for building IoT applications.
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[33] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless

31



in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,” arXiv preprint arXiv:2003.03423, 2020.

[34] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and
O. Mehani, “Network-level security and privacy control for smart-
home iot devices,” in International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob). IEEE, 2015,
pp. 163–167.

[35] J. Kuhlenkamp, S. Werner, M. C. Borges, K. El Tal, and S. Tai,
“An Evaluation of FaaS Platforms as a Foundation for Serverless Big
Data Processing,” in International Conference on Utility and Cloud
Computing. IEEE/ACM, 2019, pp. 1–9.

[36] T. Nolet. Aws lambda go vs. node.js performance
benchmark: updated. https://medium.com/hackernoon/
aws-lambda-go-vs-node-js-performance-benchmark-1c8898341982.

[37] J. Jackson. Benchmarking serverless: Ibm scientists devise
a test suite to quantify performance. https://thenewstack.io/
ibm-scientists-set-quantify-serverless-performance/.

[38] S. K. Mohanty, G. Premsankar, M. Di Francesco et al., “An evaluation
of open source serverless computing frameworks.” in CloudCom, 2018,
pp. 115–120.

[39] S. Coulson, M. Woods, M. Scott, D. Hemment, and M. Balestrini,
“Stop the noise! enhancing meaningfulness in participatory sensing

with community level indicators,” in Designing Interactive Systems
Conference (DIS). ACM, 2018, p. 1183–1192.

[40] T. Pasquier, D. Eyers, and J. Bacon, “Php2uni: Building unikernels using
scripting language transpilation,” in IEEE International Conference on
Cloud Engineering (IC2E’17). IEEE, 2017, pp. 197–203.

[41] P. Enberg, “A performance evaluation of hypervisor, unikernel, and
container network i/o virtualization,” Ph.D. dissertation, MS thesis,
Faculty Sci., Univ. Helsinki, Helsinki, Finland, 2016.

[42] T. Bui, “Analysis of docker security,” arXiv preprint arXiv:1501.02967,
2015.

[43] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM is Lighter (and Safer)
than your Container,” in Symposium on Operating Systems Principles
(SOSP). ACM, 2017, pp. 218–233.

[44] B. Xavier, T. Ferreto, and L. Jersak, “Time provisioning evaluation of
kvm, docker and unikernels in a cloud platform,” in International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid). IEEE/ACM,
2016, pp. 277–280.

[45] A. Aske and X. Zhao, “Supporting multi-provider serverless comput-
ing on the edge,” in International Conference on Parallel Processing

Companion. ACM, 2018, pp. 1–6.

32


