
2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

Towards Seamless Configuration Tuning of Big
Data Analytics

Ayat Fekryl*, Lucian Caratal *, Thomas Pasquier2 , Andrew Ricel and Andy Hopperl

1 Computer Laboratory, University of Cambridge
2 Department of Computer Science, University of Bristol

Abstract-The execution of distributed data processing work
loads (such as those running on top of Hadoop or Spark) in
cloud environments presents a unique opportunity to explore
multiple trade-offs between elasticity (and types of resources
b~ing allocated), overall runtime and total costs. However, beyond
high-level constraints and objectives, it's not the end-users who
should be ~ainly concerned with those optimizations, but the
cloud providers. They have both the vantage point to collect
actionable information, economies of scale and position to adjust
parameters when dynamic conditions change, in order to fulfil
SLOs that go beyond classic measures of latency and throughput.

This is at odds with the existing approach of making software
(including the interfaces to the cloud and the processing frame
works) as configurable as possible. We propose that rather than
configurability, self-tunability (or the illusion of it as far as the
end-user is concerned) is a better long-term goal.

I. INTRODUCTION

The task of deriving insights from increasing quantities of
data (estimated at 1.7 MB/s/person in 2020 [2]) is poised to
remain actual for some time to come, with systems evolving
to keep up with the data volume either through technology
advancements or optimisations of known pipelines, while also
improving cost-efficiency.

The idea of processing data by distributing work over a
cluster of machines is well established, with Data Intensive
Scalable Computing (DISC) systems such as Hadoop [4],
Spark [1] and Flink [3] being widely deployed even today.
What is understood less is how such systems should be con
figured for running a given workload optimally, and deployed
in the cloud using the appropriate resources (number of VMs,
CPUs, memory, disk) to meet given targets of runtime or cost.
Until now, those frameworks have been designed to operate
mostly in environments where the resource allocation is static
(as opposed to elastic) and the configuration of their many
parameters is left as an exercise to the expert end-user.

Existing results show that misconfiguration is expensive:
plausible but under-provisioned cluster setups can slow the
analytics pipelines by up to 12X [10] while suboptimal
framework configurations can lead to 89X performance degra
dation [31]. At the same time, a push for democratizing
data implies allowing people with fewer resources and less
expertise in debugging pipelines or low-level cloud bottlenecks
to perform complex analytics.

As an end-user of commoditized computing infrastructures,
the competitive advantage should lean towards having insights

* equal contribution

2575-8411/19/$31.00 ©2019 IEEE
00110.1 109/ICDCS.2019.00189

into how to process the data rather than into ways to optimally
run systems that do the data processing. We therefore propose
transparent self-tuning of data processing pipelines, offered as
a cloud service with user-settable, high level objectives (SLOs)
such as runtime or cost.

Existing efforts in this space have focused on the automa
tion of configuration for individual components [19], [26],
[25], [28], [10], [30]. In particular, they address cloud and
DISC systems configuration separately. Of course, real-world
scenarios imply that such optimisations need to be done
jointly, considering elements such as: cloud resource allocation
and scheduling (co-location with other workloads), workload
characteristics (type, input data distribution, frequency), DISC
configuration, etc. Optimal choices for some of those elements
are not absolute but dependent on the others (a basic example
would be the relationship between the number of virtual CPUs
allocated and the number of Spark executor cores).

Thinking about the joint optimisation is not as simple as
extending what has been already done: current configuration
tuning strategies are based on the exploration of the configura
tion search space, which quickly grows as more dimensions are
added. This means that tuning costs increase beyond what is
feasible for single clients to run while maintaining efficiency:
for example, a recent search-based Spark workload tuning
required around 500 workload executions [35]; model-based
approaches require thousands of executions to build prediction
models that estimate the cost of running with a particular
configuration [31].

Even worse, changes in workload and environment charac
teristics (input size, data, VM migration) mean that re-tuning
might be needed, with less time to amortize the costs of finding
previous tuned configurations.

The end-users should neither incur those high tuning costs,
nor be concerned with detecting any change in workload
characteristics for re-tuning in order to avoid missing oppor
tunities related to efficiency and cost. Instead, configuration
tuning should be fully automated by the cloud providers. They
witness numerous workload execution metrics under different
configurations and are aware of any underlying changes in
workload co-location, network congestion, etc. Not only can
they build tuning models of better accuracy using collected
execution metrics, but also can instantly detect any change in
workload characteristics and adapt resource provisioning and
DISC system configuration accordingly.

Research in this direction is more tractable than understand-

1912

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on November 25,2020 at 05:43:43 UTC from IEEE Xplore. Restrictions apply.

c..::oogk

Cloud Infrastructure

Execute workload

•Runtime metries

amazon
webservices-

Deployed DISC System

AmazonEMR

research in the configuration tuning space. Irrespective of
the particular strategy, the tuning process takes place in two
stages Fig. I: In the first stage, the end-user uses a tuning
system to select the characteristics of the virtual cluster used
to run the DISC workload. By executing the workload one or
more times, the tuning system tries to determine its sensitivity
to changable parameters such as the number of CPUs and
VM instances as well as to requirements of memory/disk
and network bandwidth, etc. Based on this information and
previously built models, the system suggests how an optimal
infrastructure would look like, and the user instantiates it
and deploys the workload. In the second stage, the tuning
system identifies the optimal DISC system configuration for
the given workload. In this section, we briefly discuss both
stages starting from existing work or plausible extensions of
it based on current directions and discuss essential limitations.

Azure HOlnsight• ...
.~. t9

Google OataProc

Fig. 1. Workload Configuration tuning

ing the general workload interference problem (which needs
solving for achieving stable self-tuning systems), but will set
the scene for results in the particular case of comparatively
long-running, repeated computation. Making this class of com
putation predictable and offering explicit trade-offs between
cost and runtime is set to decouple the need for large-scale
computation from the requirement of in-depth expertise in low
level aspects of software optimization.

II. BACKGROUND

Most frequently, end-users tune system configurations man
ually based on expertise, measurement and/or trial-and-error.
However, the manual approach doesn't guarantee not missing
further optimization opportunities and it is difficult to apply in
a high-dimensional configuration space. Likewise, a number of
general methods (USE, TSA)l have been suggested as recipes
for figuring out the location of bottlenecks and explaining the
time spent by applications. Those are ways of guiding tuning
or debugging performance issues rather than automating the
process for dynamic workloads. However, some automation
strategies have been proposed, and we summarize how those
could be applied to the case of real DISC systems in cloud
environments. Our own work in this space has led to the
development of a self-tuning Spark prototype, which we use
as an experimental testbed for various tuning strategies and
exploratory measurements. We base our discussion in this
paper both on usage of this prototype as well as on related

1http://www.brendangregg.comlmethodology.html

A. Cloud Configuration
During cloud configuration tuning, let's assume that the

workload executes several times on different types of instances
provided by different cloud infrastructures such as Amazon
EC2, Microsoft Azure and Google Compute Engine. On each
infrastructure, the workload is executed under different cloud
configurations to find which one is best (e.g. instance family,
instance type, number of instances).

The workload is then deployed to the cloud provider where
it showed the best runtime under the optimized configuration,
using an existing "native" DISC-deployment service such as
Amazon EMR [5], Microsoft Azure HDInsigh [6], or Google
DataProc [7]. Such approaches are inherently static (once the
cluster setup and cloud provider are decided, it is assumed they
remain constant) and miss the opportunity of using the cloud's
elasticity features when the workload changes. Furthermore,
their choices could be biased due to transient co-location of
test workload runs with other resource-intensive workloads or
(at the other end) with atypically low contention for resources.

Three systems have the potential of realizing the "static"
vision today: Cherrypick [10] finds near-optimal cloud con
figurations by leveraging Bayesian optimization to build a
performance model for recurring jobs using a small number of
execution samples. PARIS [30] is a system for selecting the
best VM for certain workloads based on user-defined metrics.
It uses offline profiling for benchmarking various VM types,
then combines this with an online fingerprint of each workload.
The combined data is used to build a decision tree and a
random forest-based performance model to select the best VM
type. Ernest [28] tunes the cloud configurations for machine
learning-based analytics workloads. It builds a performance
model based on the particular structure of machine learning
jobs, but has poor adaptivity to other types of workloads [10].

B. DISC systems Configuration
The tuning of DISC systems, which are notoriously difficult

to configure optimally due to the large search space, has been
approached by specializing for particular frameworks: Several
solutions address tuning for HadooplMapReduce workloads:

1913

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on November 25,2020 at 05:43:43 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Spark internal architecture, redrawn with further edits from [23)

III. A MOTIVATING EXAMPLE

We will refer to Apache Spark [1] as a concrete example
for showing how a world in which self-tuning is a building
block would look like. Spark has been widely adopted for
in-memory big data analytics. In this section we highlight its
complex internal structure and numerous tunable parameters.
This complexity, together with the variety of workloads it
caters to, makes it a prime candidate for experimenting non
trivial strategies for automated, adaptive, accurate and efficient
configuration tuning.

For example, Cherrypick works well to tune the configu
ration for recurring analytics jobs but needs the end-user to
define a representative workload for his recurring job, which
requires intensive exploration efforts and technical background
(user intervention). Ernest effectively tunes the machine
learning based jobs but does not adapt to SQL-based jobs
(poor adaptivity). Starfish shows limited prediction accuracy
when tried under different configurations [26] (limited accu
racy). Lastly, most of the existing solutions incur high tuning
overhead, by spending a significant amount of time exploring
the search space, either to identify good configurations or to
build predictive models for workload performance [35], [25],
[24].

Providing an end-to-end configuration tuning as a cloud
service has the potential to overcome these tuning challenges.
Since the cloud is a centralized place for executing various
workloads, it can leverage gathered execution metrics across
multiple clients to offer tuning as a service, fully automating
the configuration tuning of the analytics workloads in an
adaptive way and with minimal end-user involvement.

Clust'er
Manager

DAG

DrIver

Worker1 Worker2 WorkerJ

Executor Executor Executor

~ ~ ~
~ ~ ~
~ ~ ~

User
Pf09Iam

resutt :;
rddl.)OI1(rdd2)

map(.).

ft e~ ..J

The existing isolated tuning paradigm does not even start
to address the configuration tuning challenges, namely, high
overheads (because of the need to re-run workloads numerous
times, making cost amortization difficult and the whole idea of
tuning impractical), poor adaptivity (in case of any changes of
the environment or of the workload, rendering previous tuned
configurations obsolete), limited accuracy (due to models
which do not take into account what the workload actually
does but considers them as black-boxes) and the lack of
transparency for the end-user (who needs to have expertise
in tuning).

MROnline[25] proposed a modified Hill climbing technique
to find good configurations; it limits the search space using
predefined tuning rules. StarFish [19] uses an What-If engine
that attempts to predict the cost of different configurations
given profiled data. For example, the engine can answer
queries like "Given the profile of a job A, input data x, cluster
resources el, what will the performance of job B be with
input data y and cluster resources c2". Here, finding good
configurations hinges on the accuracy of the what-if engine
itself; it showed less accuracy when tried with heterogeneous
applications and cloud workloads [26]. AROMA [24] is a
system for Hadoop resource provisioning and configuration
tuning. It uses the k-medoids algorithm to cluster the executed
jobs based on CPU, network and 10, then leverages Support
Vector Machine (SVM) for tuning the configuration. Similarly,
Bu et el. [11] proposed to tune Web systems such as Apache
server and Tomcat configuration using reinforcement learning.
They tuned 8 configuration parameters using 25 executions.
Those approaches fit Hadoop and systems with limited number
of configuration parameters, as the number of tuned configu
ration parameters (6-12) is significantly smaller than in other
systems (such as Spark).

For more parameters, Yu et al. proposed DAC [31], a data
size aware Spark configuration tuning system, using a hierar
chical modelling approach to approximate workload execution
time as a function of its input data-size and configuration. It
then leverages Genetic algorithms to search for good config
urations based on the execution time estimated by the model.
The high costs of workload executions to build this model are
hard to amortize before re-tuning is needed. However, for fre
quently run static workloads, DAC improves performance by
30-89X with respect to the default configuration and tunes 41
configuration parameters. Wang et al. [29] leverage regression
trees to tune Spark configurations; they tune 16 configuration
parameters and improve performance by 36%. This approach
also needs a significant number of execution samples to build
a regression tree model of a good accuracy. BestConfig [35]
leverages a divide-and-diverge sampling method and a re
cursive bound-and-search algorithm to tune configurations. It
was used to tune 30 spark configuration parameters using
500 execution samples achieving 80% runtime performance
improvement with respect to the default configuration.

C. Discussion

1914

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on November 25,2020 at 05:43:43 UTC from IEEE Xplore. Restrictions apply.

A. Spark Internals
Spark was developed to overcome the limitations of the

MapReduce [14] paradigm in handling iterative workloads.
MapReduce forces Mappers to write data to disk for reducers
to read, which consumes significant 10 resources for iterative
applications (but also leads to more predictable resource usage
patterns). Spark makes the design choice of keeping data in
memory as RDDs [32] (Resilient Distributed Datasets), saving
significant 10 costs and speeding up iterative job execution
time by up to lOx compared to Hadoop [33]. RDDs are
immutable collections distributed over a cluster of machines to
form a restricted shared memory, with each RDD consisting of
a set of partitions. Fig. 2 shows how Spark works internally.
Users write a program and submit it to the Spark Driver,
which is a separate process that executes user applications and
schedules them into executable jobs. The Spark programming
model is based on two types of function, namely, transforma
tions and actions. Transformations represent lazy computations
on the RDD that create a new RDD (e.g., map, filter, etc.).
Actions trigger computation on an RDD and produce an output
(e.g., count, collect, etc.). When an application invokes an
action on an RDD, it triggers a Spark job. Each job has
an RDD dependency graph which is a graph of all parent
RDDs of an RDD, representing a logical execution plan for a
set of transformations and the lineage of RDDs. In terms of
runtime, this complexity allows for various critical paths and
bottlenecks which can vary from one workload to the next,
making the system as a whole more difficult to model as a
black box.

The RDD graph is mapped into a Directed Acyclic Graph
(DAG) that represents the physical execution plan of how a
job will be split into stages, the dependencies between stages
and the partitions processed in each stage. The Driver uses
the DAG to define the set of tasks to execute at each stage.
Typically, an RDD partition is given as an input to a stage
and is processed by a Spark task. Finally, the driver sends
the task set to the cluster manager which then assigns tasks
to worker nodes. A worker node can have multiple executors,
with each of them being a process executing an assigned task
and sending the result back to the driver.

B. Spark Internal Choices
Each Spark executor has a number of configuration pa

rameters that significantly influence global performance, with
tuned configuration parameters being able to improve the
performance by up to 89X compared to the default configura
tion [31]. Spark has 200 configuration parameters [8], with the
search space to tune just 30 of them exceeding 1040 possible
configurations. For each workload, the user needs to find the
best choice for configuration parameters covering different
execution aspects such as processing, memory, networking
and data shuffling. Example to these choices are: how many
executor instances? what is the size of memory per executor?
what is the number of cores per executor? how many partitions
within RDD? what is the size of shuffled data buffer? should
the shuffled data be compressed?

Exposing all of those knobs makes the system flexible. It
also makes it difficult to run efficiently without a mountain
of expertise and measurement. Even so, human expertise is of
little help in dynamic tuning. Consider web services: they can
make direct use of cloud elasticity because of architectures
sharing little state between instances and clear metrics such
as number of requests per second and latency. Fewer metrics
are available to make similar decisions for long-running tasks
or for their stateful execution as part of a large DAG.

IV. VISION

Our vision is to enable the fully automated, accurate and
adaptive tuning of analytics workloads while bounding costs
on the end-user side. This will facilitate workload deployment
and save effort, time and money for cloud users. Consider a
user wanting to deploy his Spark analytics workload to the
cloud, while lacking facilities of self-tuning: he needs to use
prior knowledge about his workload to efficiently pick the
best cloud instance family and type for deployment (risking
either higher costs or long runtimes and crashes when choosing
incorrectly). He then starts the time consuming task of figuring
out which of the default Spark parameters he should change
to make things better. Any failed test execution is expensive
and has a long fix-execute-debug cycle.

A recent study shows that 40% [9] of the analytics jobs are
recurring while the remaining are changing over time. Fur
thermore, even recurring jobs have characteristics that change
(different input, increasing data sizes). Therefore, it is expected
that in the usual case, the configuration will need regular re
tuning [10]. Triggering this could be as simple as detecting
relative performance degradation over time while running
the same workload type on the same cluster configuration.
Currently, it is the end-user's responsibility to detect this
degradation and change the configuration accordingly.

In an ideal world, we've claimed that it's the cloud provider
who needs to address resource provisioning and DISC system
tuning, also detecting the need for re-tuning with minimal end
user intervention.

Feasibility: The cloud is a centralized place for executing
numerous workloads, and the cloud providers witnesses abun
dant execution metrics under different cloud and DISC systems
configurations. They can leverage the gathered execution met
rics to build tuning models of better accuracy. Moreover, the
cloud providers are aware of any underlying changes in work
load co-location, network congestion, etc. This allows them
to instantly detect any change in workload characteristics and
adapt resource provisioning and DISC system configuration
accordingly. However, providing an integrated tuning service
could be seen as a risk on the cloud providers' revenues,
since it accelerates workload deployment and execution. On
the other hand, providing such a service also has significant
potential benefits: It will minimize the configuration tuning
burden on the user and require less expertise for running
complex workloads at lower price points, eventually leading
to a wide democratization of cloud to non-technical users,
offering a path of growth for cloud providers in an already

1915

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on November 25,2020 at 05:43:43 UTC from IEEE Xplore. Restrictions apply.

competitive environment. We illustrate the principles of our
proposed vision in the following subsections. All observations
are based on our experience in running our own self-tuning
Spark prototype in clouds from two major providers, totalling
more than 6 months of continued execution for clusters from
4 VMs to 20 VMs, with more than 2000 configurations tested
across 5 types of workloads.

A. Seamless configuration tuning with little human interven
tion

The types of users running cloud-based big data analytics
workloads will in time become more diverse. For example,
there is no reason why part of the jobs running today in
specialized HPC clusters will not be able to run in the cloud,
making use of large pools of resources but accepting some
form of co-location or shared infrastructure. There is a big
group of data scientists in domains from biology [18], [27] to
physics [21] and astronomy [34] which have spent a significant
amount of time tuning their workloads for specific HPC cluster
environments. Those configurations will not necessarily port
well to new shared environments, so anything aiding the
transition will help bring new customers for cloud providers.

Similarly, lower entry-point prices will diversify the number
of people wanting to run complex data processing jobs or ma
chine learning algorithms to test hypotheses or analyse existing
public datasets. Research in Universities without resources
for private clusters or realizing the costs in managing and
keeping those up to date might also partially make use of cloud
infrastructures. All of this means a new "generation" of users
not necessarily focused on optimizing workloads but interested
in the results of their execution will see manual configuration
as a barrier, and running with the default configurations as
prohibitively expensive.

Thirdly, if the cloud is to become a commodity which
people use either directly or indirectly as a fact-of-life (to
get reports about their loT infrastructure, to understand their
impact on the world around them by collecting data from
sensors in the environment, etc), it is clear that complete
transparency into how configuration details are chosen is
important. As a comparison with the past, making a phone call
today no longer requires the manual configuration of electrical
circuits along the line or talking to an operator. Why should
the cloud-of-tomorrow be any different?

B. Resilience to input data and environment changes
Running analytics workloads that process ever growing data

sets in an elastic cloud environment implies the vulnerability
of the workloads to frequent changes in their characteristics,
either due to the data itself or due to changes in the underlying
infrastructure.

We experimented three different workloads from a popular
big data benchmark [20], we used three evolving input sizes
(OSl, OS2 and OS3) for each workload. An Amazon EMR
cluster of four h1 . 4xlarge instances was used to run this
experiment. If the tuning approach is not resilient to input
size changes then it will tune the configuration once for

Potential savings Pagerank Bayes Classifier Wordcount

DBl best - DB2 best 8% 17% 0%

DBl best - DB3_best 56% 25% 3%

TABLE I
POTENTIAL EXECUTION TIME SAVING OF RE-TUNING CONFIGURATION

OVER EVOLVING INPUT SIZES.

OSl and reuse this configuration for the evolving input sizes.
However, re-tuning the configuration over the growing input
sizes has the potential to save workload execution time through
accommodating the changes in workload characteristics. To
illustrate this potential savings, for each workload and input
size we ran the workload using 100 random configurations to
find the best configuration. Table I shows the potential savings
in execution time from the re-used configuration of 0 S1 to
the best configuration found for OS2 and OS3. Predictably,
as the input size grows, the execution time savings from re
tuning the configuration can be significant and reach up to
56%. However, the amount of execution time savings varies
from workload to another and re-tuning can lead to marginal
or no savings (Wordcount workload). It is crucial to accurately
and efficiently define the need for configuration re-tuning to
seize any optimization opportunities while accelerating the
amortization of the re-tuning cost. Paradoxically, the current
approaches for cloud and DISC systems tuning require the
user to perform a significant number of new executions for
identifying configuration that is adapted to changes in work
load characteristics. Our vision of the future configuration
tuning suggests that approaches should aim to be resilient
to such changes, automatically detecting the need of re
tuning and finding a new close-to-optimal configuration after
a minimum number of executions. This would help the end
user to accelerate the deployment of their analytics workloads
and the extraction of insights from data, instead of worrying
about workload tuning and optimization.

C. Offload tuning cost to the cloud provider

The current isolated tuning paradigm has high tuning costs,
possibly higher than the actual runtime cost of the workload
during its lifetime (especially for non-periodic or one-off
workloads). In practice, even for frequently run jobs, the
number of executions required to tune a workload might
exceed the number of times the workload runs before re
tuning is necessary. For example, the BestConfig [35]
system requires 500 execution samples to identify a good
Spark configuration, and this would consume more resources
than the 90 "normal" runs of our exemplar workload during a 3
months period. Indeed, the cost of workload tuning should not
outweigh the runtime cost of the workload before it requires
re-tuning.

This is especially important as tuning itself uses multiple
executions to iteratively search for good configurations, and
before one is found the tuning system will inevitably explore

1916

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on November 25,2020 at 05:43:43 UTC from IEEE Xplore. Restrictions apply.

configurations which could yield worse performance than the
initial configuration. If the time spent executing using those
bad configurations is not later outweighed by the increase in
speed due to the best found configuration, tuning makes no
sense.

Our vision is that the high tuning and re-tuning costs should
be offloaded from the user to the cloud provider. The cloud
is a centralized place that is able to keep a record of the
different workloads' execution history under different cloud
and DISC system configurations, across users. This data can
only be leveraged by the cloud provider, and it would enable
efficient configuration tuning from the user's perspective. This
approach to end-to-end tuning of the analytics workloads will
bound the tuning costs on the user side and speed up cost
amortization on the cloud provider side.

D. Jobs should run within X% of the optimal runtime
Today, cloud providers offer no guarantees about high-level

properties of jobs run by users on their infrastructure. Instead,
they set service-level objectives (SLOs) related to properties
of infrastructure which they have full control over (network
and disk throughput, latency, etc). However, in a world where
some workloads become predictable enough because of long
term characterization and tuning, it would make sense to offer
end-users guarantees based on those known properties. And
beyond these, the tuning service could let users make trade
off decisions which impact things like cost: do I need the
results quickly no matter the cost, or am I willing to wait a
long time for the results?

Presently, such choices are implicit in the user's picked
cloud configuration, but lacking tuning the impacts are unclear:
Who can tell me if scaling vertically, horizontally or both gives
me the best benefit vs cost ratio?

Predictability naturally leads to better cost forecasting on
the user side (users want to know how much they will pay
when running a system that potentially scales up and down for
some periodic workloads), but just as importantly simplifies
the task of cloud provider's job scheduler and should make it
more efficient in selecting locations for job execution.

The objective stated in the title of the section is challenging
to achieve as stated (mostly because measuring it requires
knowing the optimal execution time, but that could be replaced
with "the runtime of similar workloads ever run in the cloud").
However, we believe it's a good goal to aspire to in terms
of the language in which the new type of SLOs should be
formulated. In the end, this should represent a commonly
agreed metric for the efficiency of the tuning system.

V. CHALLENGES

In this section we illustrate the challenges and open ques
tions associated with offering a fully autonomous configuration
tuning service by the cloud provider.

A. Develop models that can transfer their tuning knowledge
It is important to define the tuning models in a way

that can transfer the acquired tuning knowledge to similar

workloads. In our context, the key knowledge to transfer is
the correlation between the different configuration parameters
and the workload performance. However, it is challenging
to extract this information from complex machine learning
models, which usually work as a black-box and do not explain
underlying mechanisms. For example, Gaussian process opti
mization has been applied successfully to enable data-efficient
cloud configuration tuning [10]. However, it is challenging to
extract the acquired tuning knowledge from Gaussian process.
Some work has been proposed to increase the interpretability
of black-box approaches while maintaining the modelling
accuracy. Duvenaud et al. [16] proposed the Additive Gaussian
processes, which decomposes the model into a sum of low
dimensional functions, each depending on only a subset of the
input variables, potentially enabling the interpretation of input
interactions and their influence on the variance of the overall
model.

It is similarly possible to move beyond black-box modelling,
perhaps using static analysis of submitted workloads to predict
critical execution paths and bottlenecks and learn the corre
sponding configuration parameters which eliminate them.

B. Leverage the tuning knowledge across workloads
Usually, configuration tuning takes place by building one

model predicting the relationship between configuration and
runtime per workload. A single such model cannot generalize
runtime predictions across workloads of different characteris
tics. However, different workloads might still share behaviours
or type of sensitivity to particular configuration parameters.
Using this information can lead to significant improvements in
the efficiency of tuning. As an example for ways of achieving
this AROMA [24] proposed to cluster similar workloads and
build a prediction model for each cluster. The challenge lays in
finding accurate ways to i) characterize workloads and define
similarity across workloads: some work has been proposed to
characterize the different analytics workloads [12], [22] but
further study is needed to show its effectiveness in end-to-end
configuration tuning; ii) inject the acquired knowledge from
one tuning workload to a similar one: this has the potential to
accelerate the tuning and improve its data efficiency (required
number of workload executions). Some work has proposed
taking advantage of homogeneous transfer learning across
similar tasks in NLP [15], [13]. Further work is needed to
study its applicability in the context of configuration tuning.
The idea here is to use a pre-trained model "template" to
initialize models for workloads with similar characteristics,
which are then fine-tuned to its unique properties. The promise
is in a faster convergence of the tuning process.

Irrespective of the path chosen, the accurate characterization
of analytic workloads is crucial in being able to detect simi
larities between them in the first place to avoid any negative
transfer [17].

C. Define a metric for tuning accuracy as part of SLOs
Current cloud provider's SLO contain specific quantified

characteristics of the provided service such as availability,

1917

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on November 25,2020 at 05:43:43 UTC from IEEE Xplore. Restrictions apply.

throughput, frequency, response time, or quality. With con
figuration tuning offered as an integral part of the cloud
services, there should be an agreement on how to characterize
its properties as part of the SLO. Open questions remain as
to exactly what metrics of effectiveness should be picked:
Can the effectiveness of the configuration be defined as a
distance from the optimal configuration? What if it is not
viable to find the optimal configuration in high dimensional
spaces? Should that reference configuration be defined as the
best configuration found for a similar workload? Alternatively,
would the amount of performance improvement with respect
to the default configuration be acceptable as a metric in the
SLO? What if there is no default configurations (the case of
cloud configuration tuning, there is no default instance family
and type)?

In the end, the relevant metrics will emerge after cloud
providers also have a better picture of what they could offer
guarantees on, so prototype implementations will be required
before settling for one particular option.

D. Define the need for workload re-tuning

To have a fully autonomous configuration tuning service,
it is important to accurately define the need for workload
re-tuning. The tuning service should be able to distinguish
marginal changes in workload characteristics from dramatic
ones. This will allow the service to detect the need for further
optimization and avoid any long-term performance degradation
and associated cost inefficiencies. Moreover, accurately defin
ing the need for re-tuning will enable avoiding any false re
tuning. For example, simply picking fixed percentual runtime
deltas as thresholds for re-tuning are likely to lead to it being
done either too frequently or too late.

The current approach for detecting the need for workload
re-tuning is based on fixed heuristics [10] that can have
similar accuracy issues across different workloads (i.e. what
is considered a marginal change for a workload, might be a
significant change for another).

VI. CONCLUSION

We presented the vision of seamless configuration tuning
for analytics workloads. It revolves around fully automating
configuration tuning and making it transparent to the end
user, from choice of cluster properties to DISC framework
configurations. We illustrated and discussed the implications
for the four principles of our proposed vision, which are:

1) Enabling configuration tuning for users with minimal
expertise in workload optimisation,

2) Configuration tuning that is resilient to dynamic workload
changes,

3) Bounded tuning cost for the end-user and its offload to
the cloud provider,

4) Augmentation of the SLO with metrics for measuring the
effectiveness of tuning.

ACKNOWLEDGEMENTS

We thank Google and Amazon for generously supporting
us with Google Cloud and AWS research credits to experi
ment our Spark tuning prototype, which certainly helped in
crystallizing this vision.

REFERENCES

[1] Apache spark: fast and general engine for large-scale data processing.,
2015. https://spark.apache.orgl.

[2] Growth forecast for the worldwide big data and business analytics mar
ket through 2020, 2015. https://www.idc.com/getdoc.jsp?containerId=
prUS41826116.

[3] Apache flink, 2016. http://flink.apache.orgl.
[4] Apache hadoop, 2016. http://hadoop.apache.orgl.
[5] Amazon EMR, 2018. https://aws.amazon.com/emr/.
[6] Google Dataproc, 2018. https://azure.microsoft.com/en-gb/services/

hdinsightJ.
[7] Google Dataproc, 2018. https://cloud.google.com/dataproc/.
[8] Spark Configuration parameters, 2018. hltps://spark.apache.orgldocs/

latestJconfiguration.html.
[9] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu,

Ion Stoica, and Jingren Zhou. Re-optimizing data-parallel computing.
In Proceedings of the 9th USENlX conference on Networked Systems
Design and Implementation, pages 21-21. USENIX Association, 2012.

[10] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. Cherrypick: Adaptively
unearthing the best cloud configurations for big data analytics. In NSDI,
volume 2, pages 4--2, 2017.

[11] Xiangping Bu, Jia Rao, and Cheng-Zhong Xu. A reinforcement learning
approach to online web systems auto-configuration. In 2009 29th IEEE
International Conference on Distributed Computing Systems, pages 2
11. IEEE, 2009.

[12] Tatsuhiro Chiba and Tamiya Onodera. Workload characterization and
optimization of tpc-h queries on apache spark. In 2016 IEEE Inter
national Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 112-121. IEEE, 2016.

[13] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and An
toine Bordes. Supervised learning of universal sentence representations
from natural language inference data. arXiv preprint arXiv:I705.02364,
2017.

[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107
113,2008.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un
derstanding. arXiv preprint arXiv:I8IO.04805, 2018.

[16] David K Duvenaud, Hannes Nickisch, and Carl E Rasmussen. Additive
gaussian processes. In Advances in neural information processing
systems, pages 226-234, 2011.

[17] Liang Ge, Jing Gao, Hung Ngo, Kang Li, and Aidong Zhang. On
handling negative transfer and imbalanced distributions in multiple
source transfer learning. Statistical Analysis and Data Mining: The ASA
Data Science Journal, 7(4):254--271, 2014.

[18] Runxin Guo, Yi Zhao, Quan Zou, Xiaodong Fang, and Shaoliang Pengo
Bioinformatics applications on apache spark. GigaScience, 7(8):giy098,
2018.

[19] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A self-tuning
system for big data analytics. In Cidr, volume 11, pages 261-272, 2011.

[20] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang.
The hibench benchmark suite: Characterization of the mapreduce-based
data analysis. In Data Engineering Workshops (ICDEW), 2010 IEEE
26th International Conference on, pages 41-51. IEEE, 2010.

[21] Kevin Jacobs and Kacper Surdy. Apache flink: Distributed stream data
processing. Technical report, 2016.

[22] Zhen Jia, Jianfeng Zhan, Lei Wang, Rui Han, Sally A McKee, Qiang
Yang, Chunjie Luo, and Jingwei Li. Characterizing and subsetting big
data workloads. In Workload Characterization (IISWC), 2014 IEEE
International Symposium on, pages 191-201. IEEE, 2014.

[23] Anton Kirillov. Spark Internal Architecture, 2016. http://datastrophic.
io/core-concepts-architecture-and-internals-of-apache-spark/.

1918

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on November 25,2020 at 05:43:43 UTC from IEEE Xplore. Restrictions apply.

[24] Palden Lama and Xiaobo Zhou. Aroma: Automated resource allocation
and configuration of mapreduce environment in the cloud. In Proceed
ings of the 9th international conference on Autonomic computing, pages
63-72. ACM, 2012.

[25] Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R
Butt, and Nicholas Fuller. Mronline: Mapreduce online performance
tuning. In Proceedings of the 23rd international symposium on High
peiformance parallel and distributed computing, pages 165-176. ACM,
2014.

[26] Guangdeng Liao, Kushal Datta, and Theodore L Willke. Gunther:
Search-based auto-tuning of mapreduce. In European Conference on
Parallel Processing, pages 406-419. Springer, 2013.

[27] Lizhen Shi, Xiandong Meng, Elizabeth Tseng, Michael Mascagni, and
Zhong Wang. Sparc: Scalable sequence clustering using apache spark.
bioRxiv, page 246496, 2018.

[28] Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Benjamin
Recht, and Ion Stoica. Ernest: Efficient performance prediction for large
scale advanced analytics. In NSDI, pages 363-378, 2016.

[29] Guolu Wang, Jungang Xu, and Ben He. A novel method for tuning
configuration parameters of spark based on machine learning. In High
Peiformance Computing and Communications; IEEE 14th International
Conference on Smarr City; IEEE 2nd International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), 20i6 IEEE i8th
international Conference on, pages 586-593. IEEE, 2016.

[30] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton
Smith, and Randy H Katz. Selecting the best vm across multiple public
clouds: A data-driven performance modeling approach. In Proceedings
of the 2017 Symposium on Cloud Computing, pages 452-465. ACM,
2017.

[31] Zhibin Yu, Zhendong Bei, and Xuehai Qian. Datasize-aware high
dimensional configurations auto-tuning of in-memory cluster computing.
In Proceedings of the Twenty-Third international Conference on Archi
tectural Support for Programming Languages and Operating Systems,
pages 564--577. ACM, 2018.

[32] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion
Stoica. Resilient distributed datasets: A fanlt-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and implementation, pages
2-2. USENIX Association, 2012.

[33] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[34] Zhao Zhang, Kyle Barbary, Frank Austin Nothaft, Evan Sparks, Oliver
Zahn, Michael J Franklin, David A Patterson, and Saul Perlmutter.
Scientific computing meets big data technology: An astronomy use case.
In Big Data (Big Data), 20i5 iEEE international Conference on, pages
918-927. IEEE, 2015.

[35] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma,
Zhuoyue Liu, Kunpeng Song, and Yingchun Yang. Bestconfig: tapping
the performance potential of systems via automatic configuration tuning.
In Proceedings ofthe 2017 Symposium on Cloud Computing, pages 338
350. ACM, 2017.

1919

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on November 25,2020 at 05:43:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

