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A large-scale study on research 
code quality and execution
Ana Trisovic   1 ✉, Matthew K. Lau   2, Thomas Pasquier   3 & Mercè Crosas1

This article presents a study on the quality and execution of research code from publicly-available 
replication datasets at the Harvard Dataverse repository. Research code is typically created by a 
group of scientists and published together with academic papers to facilitate research transparency 
and reproducibility. For this study, we define ten questions to address aspects impacting research 
reproducibility and reuse. First, we retrieve and analyze more than 2000 replication datasets with 
over 9000 unique R files published from 2010 to 2020. Second, we execute the code in a clean runtime 
environment to assess its ease of reuse. Common coding errors were identified, and some of them 
were solved with automatic code cleaning to aid code execution. We find that 74% of R files failed 
to complete without error in the initial execution, while 56% failed when code cleaning was applied, 
showing that many errors can be prevented with good coding practices. We also analyze the replication 
datasets from journals’ collections and discuss the impact of the journal policy strictness on the 
code re-execution rate. Finally, based on our results, we propose a set of recommendations for code 
dissemination aimed at researchers, journals, and repositories.

Introduction
Researchers increasingly publish their data and code to enable scientific transparency, reproducibility, reuse, 
or compliance with funding bodies, journals, and academic institutions1. Reusing data and code should propel 
new research and save researchers’ time, but in practice, it is often easier to write new code than reuse old. Even 
attempting to reproduce previously published results using the same input data, computational steps, methods, 
and code has shown to be troublesome. Studies have reported a lack of research reproducibility2,3 often caused 
by inadequate documentation, errors in the code, or missing files.

Paradigms such as literate programming could help in making the shared research code more understand-
able, reusable, and reproducible. In literate programming, traditional source code is interspersed with explana-
tions of its logic in a natural language4. The paradigm was encouraged for scientific computing and data science 
to facilitate reproducibility and transparency. However, in practice, researchers write code intending to obtain 
scientific insights, and there is often no incentive to structure and annotate it for reuse. As a result, the research 
code quickly becomes unusable or unintelligible after meeting its initial purpose5.

Though much of the code’s intrinsic design will determine its longevity, its dissemination platform could 
also have a compelling influence6. In particular, data and code repositories are some of the primary venues for 
sharing research materials. They aim to support researchers by creating general dissemination guidelines and 
descriptive metadata, but they cannot always prevent irreproducibility and code-rot due to the vast diversity of 
programming languages and complex computing processes. This is only aggravated as researchers generate and 
share new results and code at a rate higher than ever before.

This paper presents a study that provides an insight into the programming literacy and reproducibility 
aspects of shared research code. The first premise of the study is to examine the properties of the shared datasets 
and research code. Information such as their size, content, presence of comments in the code, and documenta-
tion in the directory help us understand the current state of research code. By comparing the observed coding 
practices to the established best practices, we identify the existing weak points and areas of improvement for 
researchers writing code. Our content analysis gives us an insight into the storage needs and requirements for 
supporting files, such as documentation, images, or maps. The second premise of the study is to examine what 
happens when an external researcher retrieves and re-executes shared research code. In particular, we ask what 
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the common errors are in executing this code and whether they can be solved with simple changes in the code. 
We explore if the code re-execution rates vary between different disciplines and other available features, and 
analyze the practices behind the best-performing ones. Finally, we explore code re-execution as a required but 
not sufficient condition for reproducibility. Based on the study’s findings, we conclude with recommendations 
for disseminating research code for researchers, journals, and repositories.

Background
Our study uses code deposited and shared at the Harvard Dataverse repository. The Dataverse project (http://
dataverse.org) is an open-source data repository platform for sharing, archiving, and citing research data. It is 
developed and maintained by the Harvard’s Institute for Quantitative Social Sciences (IQSS) and a community 
of open source contributors. Currently, more than 60 institutions worldwide run Dataverse instances as their 
data repository, each hosting data generated by one or more institutions.

Dataverse repositories allow researchers to deposit and share all research objects, including data, code, docu-
mentation, or any combination of these files. A bundle of these files associated with a published scientific result 
is called a replication package (or “replication data” or dataset in Dataverse repositories). Researchers’ code from 
replication packages usually operates on data to obtain the published result. For the Harvard Dataverse repos-
itory, replication packages are typically prepared and deposited by researchers themselves in an unmediated 
fashion (self-curated).

The most popular programming languages among the Harvard Dataverse repository users are Stata and R, as 
shown from the frequency of deposited code files in Fig. 1. The two languages are often used in quantitative social 
science research. Their observed popularity can be attributed to Harvard Dataverse repository initially specializing 
in sharing social science research data. In the last five years, it has become a general-purpose, inter-disciplinary 
data repository. Stata is proprietary statistical software used in economics, sociology, political science, and health 
sciences. R is free and open-source software frequently used among statisticians and data analysts in the social 
sciences. Due to its popularity among academics and its open-source license, R is an ideal candidate for our study. 
It is currently ranked as the 13th most popular language in the TIOBE index (https://www.tiobe.com/tiobe-index). 
In the past, it was ranked as the most popular language7 and has been rated among the top in the Kaggle Machine 
Learning & Data Science Survey in the previous few years8. R originated as an open-source and free version of S, 
a statistical command language that made programming accessible without the necessity of formal training. R is 
highly adaptable due to its extensible package system, which led to a surge of community-driven developments. 
Although the broad community development created potential for unsustainable code, methods for package stand-
ardization and quality control have been improving with the creation of RStudio, an integrated development envi-
ronment (IDE) for R, and online communities like R-Hub and ROpenSci.

Implementation and Methods
The R programming language is the main focus of our study due to its open-source license and popularity in 
scientific computing. We retrieve the content of 2109 publicly-available replication packages published from 
2010 to July 2020 that contain 9078 R code files from the Harvard Dataverse repository. The Harvard Dataverse 
archives more than 40,000 datasets containing over 500,000 files at the time of writing. The rest of the datasets, 
over 65,000, are harvested from other federated repositories. For our analysis, we use only the deposited datasets 
(not harvested) due to the metadata differences across different repositories. Below, we elaborate on the study’s 
implementation, workflow, and data collection.

We use AWS Batch (https://aws.amazon.com/batch) to parallelize the effort of retrieving and re-executing 
research code in each replication package. AWS Batch automatically provisions resources and optimizes the 
workload distribution while executing jobs without interactions with the end-user. All replication packages in 
the Harvard Dataverse repository are uniquely identified with a DOI (digital object identifier), and we start the 
analysis by retrieving the list of DOIs that contain R code (Fig. 2).

	 1.	 The DOI list is used to define the AWS jobs, which are then sent to the batch queue, waiting until resources 
become available for their execution.

	 2.	 When a job leaves the queue, it instantiates a pre-installed Docker image that contains the necessary soft-
ware pipeline to retrieve a replication package and execute its R code.

	 3.	 Each job re-executes code from a single replication package using an Amazon EC2 instance with 16 vCPUs 
and 1024 GB of memory.

Fig. 1  Most popular code file types on Harvard Dataverse (Oct, 2020). Of the top two, R is open source and free.
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	 4.	 Finally, the results and information related to the re-execution are stored on DynamoDB (https://aws.
amazon.com/dynamodb).

The collected data, source code and complete instructions to reproduce our analysis are available online at 
Dataverse9 and GitHub under MIT license.

Data collection workflow.  For testing research code re-execution, we use a Docker image with pre-installed 
conda environment manager, R and Python software on Debian GNU/Linux 10. The image contains three inde-
pendent R environments, each with a different version of the R interpreter and corresponding r-essentials, a bun-
dle of approximately 200 most popular R packages for data science. In addition to the software, the image contains 
a custom-made workflow that conducts the study and collects data. The logic of the workflow is the following:

	 1.	 It downloads a replication package from the Harvard Dataverse repository. We verify and note if the file 
has correctly downloaded or if there was a checksum error. We collect data on the size and content of the 
replication package.

	 2.	 We conduct an automatic code cleaning, scanning and correcting the code for some of the most common 
execution errors, such as hard-coded path variables (see the next section). Statistics on code files, such as 
the number of lines, libraries, and comments, are also collected.

	 3.	 The workflow attempts to execute the researchers’ code for an allocated period of one hour per file and five 
hours in total. The re-execution test is conducted with and without the code cleaning step, and the result 
(success, error, or time-limit exceeded) is recorded.

	 4.	 The re-execution results and other collected data are passed to the backend database for analysis.

Though a total of 2,170 replication packages contained R code and were visible through the Dataverse API, 
we successfully retrieved 2109 (97%) of them. Some of these packages had restricted access and caused an’au-
thorization error’ when we attempted to retrieve them. In other cases, files had obscure and erroneous encoding, 
which caused errors during the download. Those were excluded from our study.

Code cleaning.  Our implementation of code cleaning aims to solve some of the most common re-execution 
errors. In particular, it removes absolute file paths, standardizes file encoding, and identifies and imports used 
libraries to set up a proper execution environment. The research code is modified to install the used library if it 
is not already present in the environment. The code cleaning approach is kept relatively simple to minimize the 
chance of ’breaking the code’ or creating errors that were not previously there. Readers can learn more about the 
technical implementation of code cleaning in Appendix 3.

Results and Discussion
We define ten research questions to provide a framework for the study. The first group of questions revolves 
around coding practices (RQ 1–3), while the other around the automated code re-execution (RQ 4–10).

RQ 1. What are the basic properties of a replication package in terms of its size and content?  Our 
first research question focuses on the basic dataset properties, such as its size and content. The average size of a 
dataset is 92 MB (with a median of 3.2 MB), while the average number of files in a dataset is 17 files (the median 
is 8). Even though it may seem that there is a large variety between datasets, by looking at the distributions, we 
observe that most of the datasets amount to less than 10 MB (Fig. 3a) and contain less than 15 files (Fig. 3b).

Analyzing the content of replication packages, we find that about 40% of them (669 out of 2,091) contain 
code in other programming languages (i.e., not R). Out of 2091 datasets, 620 contained Stata code (.do files), 46 
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Fig. 2  Implementation on the AWS Batch.
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had Python code (.py files), and 9, 7, and 6 had SAS, C++, and MATLAB code files, respectively. The presence 
of different programming languages can be interpreted in multiple ways. It might be that a dataset resulted in a 
collaboration of members who preferred different languages, i.e., one used R and another Stata. Alternatively, 
it may be that different analysis steps are seamlessly done in different languages, for example, data wrangling in 
R and visualization in Python. However, using multiple programming languages may hinder reproducibility, 
as an external user would need to obtain all necessary software to re-execute the analysis. Therefore, in the 
re-execution stage of our study, it is reasonable to expect that replication packages with only R code would per-
form better than those with multiple programming languages (where R code might depend on the successful 
execution of the code in other languages).

The use of R Markdown and Rnw have been encouraged to facilitate result communication and transpar-
ency10. R Markdown (Rmd) files combine formatted plain text and R code that provide a narration of research 
results and facilitate their reproducibility. Ideally, a single command can execute the code in an R Markdown 
file to reproduce reported results. Similarly, Rnw (or Sweave) files combine content such as R code, outputs, and 
graphics within a document. We observe that only a small fraction of datasets contain R Markdown (3.11%) and 
Rnw files (0.24%), meaning that to date few researchers have employed these methods.

Last, we observe that 91% of the files are encoded in ASCII and about 5% in UTF-8. The rest use other encod-
ings, with ISO-885901 and Windows-1252 being the most popular (about 3.5% together). In the code cleaning 
step, all non-ASCII code files (692 out of 8173) were converted into ASCII to reduce the chance of encoding 
error. In principle, less popular encoding formats are known to sometimes cause problems, so using ASCII and 
UTF-8 encoding is often advised11.

RQ 2. Does the research code comply with literate programming and software best  
practices?  There is a surge of literature on best coding practices and literate programming12–16 meant to help 
developers create quality code. One can achieve higher productivity, easier code reuse, and extensibility by fol-
lowing the guidelines, which are typically general and language agnostic. In this research question, we aim to 
assess the use of best practices and programming literacy in the following three aspects: meaningful file and 
variable naming, presence of comments and documentation, and code modularity through the use of functions 
and classes.

Best practices include creating descriptive file names and documentation. Indeed, if file names are long and 
descriptive, it is more likely that they will be understandable to an external researcher. The same goes for addi-
tional documentation within the dataset. We observe that the average filename length is 17 characters without 
the file extension, while the median is 16. The filename length distribution (Fig. 4a) shows that most file lengths 
are between 10 and 20 characters. However, we note that about a third or 32% (669) of file names contain a’space’ 
character, which is discouraged as it may hinder its manipulation when working from the command line. We 
also searched for a documentation file, or a file that contains “readme”, “codebook”, “documentation” “guide” 
and “instruction” in its name, and found it in 57% of the datasets (Fig. 4b). The authors may have also adopted 
a different convention to name their documentation material. Therefore, we can conclude that the majority of 
authors upload some form of documentation alongside their code.

Further, we examine the code of the 8875 R files included in this study. The average number of code lines per 
file is 312 (the median is 160) (Fig. 5a). Considering that there are typically 2 R files per dataset (median, mean 
is 4), we can approximate that behind each published dataset lies about 320 R code lines.

Comments are a frequent part of code that can document its processes or provide other useful information. 
However, sometimes they can be redundant or even misleading to a reuser. It is good practice to minimize the 
number of comments not to clutter the code and replace them with intuitive names for functions and variables12. 
To learn about commenting practices in the research code, we measure the ratio of code lines and comment lines 
for each R file. The median value of 4.5 (average is 7) can be interpreted as one line of comments documenting 4 
or 5 lines of code (Fig. 5b). In other words, we observe that comments comprise about 20% of the shared code. 
Though the optimal amount of comments depends on the use case, a reasonable amount is about 10%, meaning 
that the code from Harvard Dataverse is on average commented twice as much.

Fig. 3  Dataset sizes and file counts.
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According to IBM studies, intuitive variable naming contributes more to code readability than comments, 
or for that matter, any other factor14. The primary purpose of variable naming is to describe its use and content, 
therefore, they should not be single characters or acronyms but words or phrases. For this study, we extracted 
variable names from the code using the built-in R function ls(). Out of 3070 R files, we find that 621 use varia-
bles that are one or two characters long. However, the average length of variable names is 10, which is a positive 
finding as such a name could contain one, two, or more English words and be sufficiently descriptive to a reuser.

Modular programming is an approach where the code is divided into sections or modules that execute one 
aspect of its functionality. Each module can then be debugged, understood, and reused independently. In R pro-
gramming, these modules can be implemented as functions or classes. We count the occurrences of user-defined 
functions and classes in R files to learn how researchers structure their code.

Out of 8875 R files, 2934 files have either functions or classes. Applying a relative number of modules per 
lines of code, we can estimate that one function on average contains 82 lines of code (mode is 55). According to a 
synthesis of interviews with top software engineers, a function should include about 10 lines of code12. However, 
as noted in Section 0, R behaves like a command language in many ways, which does not inherently require users 
to create modules, such as functions and classes. Along these same lines, R programmers do not usually refer to 
their code collectively as a program but rather as a script, and it is often not written with reuse in mind.

RQ 3. What are the most used R libraries?  The number of code dependencies affects the chances of 
reusing the code, as all dependencies (of adequate versions) need to be present for its successful execution. 
Therefore, a higher number of dependencies can lower the chances of their successful installation and ultimately 
code re-execution and reuse. We find that most datasets explicitly depend on up to 10 external libraries (Fig. 6) 
with individual R files requiring an average of 4.3 external dependencies (i.e., R libraries). The dependencies in 
code were detected by looking for “library”, “install.packages” and “require” functions.

The list of used libraries provides insight into the goals of research code (Fig. 7). Across all of the datasets, the 
most frequently used library is ggplot2 for plotting, indicating that the most common task is data visualiza-
tion. Another notable library is xtable, which offers functions for managing and displaying data in a tabular 
form, and similarly provides data visualization. Many libraries among the top ten are used to import and manage 
data, such as foreign, dplyr, plyr and reshape2. Finally, some of them are used for statistical analysis, 
like stargazer, MASS, lmetest and car. These libraries represent the core activities in R: managing and 

Fig. 4  File name lengths and presence of documentation.

Fig. 5  Number of code line and relative number of comments.
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formatting data, analyzing it, and producing visualizations and tables to communicate results. The preservation 
of these packages is, therefore, crucial for reproducibility efforts.

The infrequent usage and absence of libraries also tell us what researchers are not doing in their projects. In 
particular, libraries that are used for code testing, such as runit, testthat, tinytest and unitizer, 
were not present. Although these libraries are primarily used to test other libraries, they could also confirm 
that data analysis code works as expected. For example, tests of user-defined functions, such as data import or 
figure rendering, could be implemented using these libraries. Another approach that can aid in result validation 
and facilitate reproducibility is computational provenance17,18. It refers to tracking data transformations with 
specialized R libraries, such as provR, provenance, RDTlite, provTraceR. However, in our study, 
we have not found a single use of these provenance libraries. In addition, libraries for runtime environment and 
workflow management are also notably absent. Libraries such as renv, packrat and pacman aid in the runtime 
environment management, and workflow libraries, such as workflowR, workflows, and drake pro-
vide explicit methods for reproducibility and workflow optimization (e.g., via caching and resource scaling). 
None of these were detected in our dataset, except for renv which was used in 2 replication packages. Though we 
can conclude that these approaches are not currently intuitive for the researchers, encouraging their use could 
significantly improve research reproducibility and reuse.

Finally, we look for configuration files used to build a runtime environment and install code dependen-
cies. One of the common examples of a Python configuration file is requirements.txt, though several 
other options exist. For a research package (compendium), a DESCRIPTION configuration file that captures 
project metadata and dependencies was proposed19. We find 9 out of 2091 replication packages that have a 
DESCRIPTION file and 30 where the word description is contained in any of the file names. Another more 
Python-ic approach to the environment capture is saving dependencies in a configuration file named install.R. 
We have not found a single install.R among the analyzed datasets, but we found similar files such as: install-
requirements.R, 000install.R, packageinstallation.R or postinstall. Our results 
suggest that the research community that uses Harvard Dataverse does not comply with these conventions, 
and one reason for that may be its recent emergence as the publication was released in 2018 (before that, a 
DESCRIPTION file was typically used for R libraries). Finally, a R user may use the library packrat or 
renv or a built-in function sessionInfo() to capture the local environment. We have not found any files 
named ‘sessionInfo’, but we found four packages containing .lock files (two of those called renv.lock) used in 
the renv library.

RQ 4. What is the code re-execution rate?  We re-executed R code from each of the replication packages 
using three R software versions, R 3.2, R 3.6, and R 4.0, in a clean environment. The possible re-execution out-
comes for each file can be a “success”, an error, and a time limit exceeded (TLE). TLE occurs when the time allo-
cated for file re-execution is exceeded. We allocated up to 5 hours of execution time to each replication package, 

Fig. 6  Distribution of unique dependencies per dataset.

Fig. 7  Most frequently used R libraries.
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and within that time, we allocated up to 1 hour to each R file. The execution time may include installing libraries 
or external data download if those are specified in the code. The replication packages that have resulted in TLE 
were excluded from the study, as they may have eventually executed properly with more time (some would take 
days or weeks). To analyze the success rate of the analysis, we interpret and combine the results from the three R 
versions in the following manner (illustrated in Table 1):

	 1.	 If there is a “success” one or more times, we consider the re-execution to be successful. In practice, this 
means that we have identified a version of R able to re-execute a given R file.

	 2.	 If we have one or more “TLE” and no “success”, the combined result is a TLE. The file is then excluded to 
avoid misclassifying a script that may have executed if given more time.

	 3.	 Finally, if we have an “error” 3 times, we consider the combined results to be an error.

We re-execute R code in two different runs, with and without code cleaning, using in each three different R 
software versions. We note that while 9078 R files were detected in 2109 datasets, not all of them got assigned a 
result. Sometimes R files exceeded the allocated time, leaving no time for the rest of the files to execute. When we 
combine the results based on the Table 1, we get the following results in each of the runs:

Going forward, we consider the results with code cleaning as primary and further analyze them unless dif-
ferent is stated.

RQ 5. Can automatic code cleaning with small changes to the code aid in its re-execution?  To 
determine the effects of the code cleaning algorithm (described in Section 4), we first re-execute original research-
ers’ code in a clean environment. Second, we re-execute the code after it was modified in the code-cleaning step. 
We find an increase in the success rate for all R versions, with a total increase of about 10% in the combined results 
(where only explicit errors and successes were recorded, and TLE values were excluded).

Looking at the breakdown of coding errors in Fig. 8, we see that code cleaning can successfully address some 
errors. In particular, it fixed all errors related to the command setwd that sets a working directory and is com-
monly used in R. Another significant jump in the re-execution rate results from resolving the errors that relate 
to the used libraries. Our code cleaning algorithm does not pre-install the detected libraries but instead modifies 
the code to check if a required library is present and installs it if it is not (see Appendix 3).

Without code 
cleaning

With code 
cleaning

Best of 
both

Success rate 25% 40% 56%

Success 952 1472 1581

Error 2878 2223 1238

TLE 3829 3719 5790

Total files 7659 7414 8609

Total datasets 2071 2085 2109

Outcomes Combined result

Success Anything Anything Success

TLE Not Success Not Success TLE

Error Error Error Error

Table 1.  Obtaining combined re-execution result per R file from results using three versions of R software. TLE 
means “time limit exceeded”.

Fig. 8  Success rate and errors before and after code cleaning. To objectively determine the effects of code 
cleaning, we subset the results that have explicit “successes” and errors while excluding the ones with TLE values 
as the outcome. As a result, the count of files in this figure is lower than the total count.
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Most code files had other, more complex errors after code cleaning resolved the initial ones. For example, 
other library errors appeared if a library was not installed or was incompatible due to its version. Such an out-
come demonstrates the need to capture the R software and dependency versions required for reuse. File, path, 
and output errors often appeared if the directory structure was inaccurate or if the output file was not saved. “R 
object not found” error occurs when using a variable that does not exist. While it is hard to pin the cause of this 
error precisely, it is often related to missing files or incomplete code. Due to the increased success rate with code 
cleaning, we note that many common errors could be avoided. There were no cases of code cleaning “breaking” 
the previously successful code, meaning that a simple code cleaning algorithm, such as this one, can improve 
code re-execution. Based on our results, we give recommendations in Section 4.

RQ 6. Are code files designed to be independent of each other or part of a workflow?  R files in 
many datasets are designed to produce output independently of each other (Fig. 9a), while some are structured in 
a workflow (Fig. 9b), meaning that the files need to be executed in a specific order to produce a result. Due to the 
wide variety of file naming conventions, we are unable to detect the order in which the files should be executed. As 
a result, we may run the first step of the workflow last in the worst case, meaning that only one file (the first step) 
will run successfully in our re-execution study.

To examine the nature of R analysis, we aggregate the collected re-execution results in the following fashion. 
If there are one or more files that successfully re-executed in a dataset, we mark that dataset as’success’. A data-
set that only contains errors is marked as’error’, and datasets with TLE values are removed. In these aggregated 
results (dataset-level), 45% of the datasets (648 out of 1447) have at least one automatically re-executable R file. 
There is no drastic difference between the file-level success rate (40%) and the dataset-level success rate (45%), 
suggesting that the majority of files in a dataset are meant to run independently. However, the success rate would 
likely be better had we known the execution order.

If we exclude all datasets that contain code in other programming languages, the file-level success rate is 38% 
(out of 2483 files), and the dataset-level success rate is 45% (out of 928 datasets). These ratios are comparable to 
the ones in the whole dataset (40% on file-level and 45% on dataset-level), meaning that “other code” does not 
significantly change the re-execution success rate. In other words, we would expect to see a lower success rate if 
an R file depends on the execution of the code in other languages. Such a result corroborates the assumption that 
R files were likely designed to be re-executed independently in most cases.

RQ 7. What is the success rate in the datasets belonging to journal Dataverse collections?  More 
than 80 academic journals have their dedicated data collections within the Harvard Dataverse repository to sup-
port data and code sharing as supplementary material to a publication. Most of these journals require or encour-
age researchers to release their data, code, and other material upon publication to enable research verification and 
reproducibility. By selecting the datasets linked to a journal, we find a slightly higher than average re-execution 
rate (42% and aggregated 47% instead of 40% and 45%). We examine the data further to see if a journal data shar-
ing policy influences its re-execution rate.

We survey data sharing policies for a selection of journals and classify them into five categories according 
to whether data sharing is: encouraged, required, reviewed, verified, or there is no policy. We analyze only the 
journals with more than 30 datasets in their Dataverse collections. Figure 10 incorporates the survey and the 
re-execution results. “No-policy” means that journals do not mandate the release of datasets. “Encouraged” 
means that journals suggest to authors to make their datasets available. “Required” journals mandate that 
authors make their dataset available. “Reviewed” journals make datasets part of their review process and ensure 
that it plays a role in the acceptance decision. For example, the journal Political Analysis (PA) provides detailed 
instruction on what should be made available in a dataset and conducts “completeness reviews” to ensure pub-
lished datasets meet those requirements. Finally, “verified” means the journals ensure that the datasets enable 
reproducing the results presented in a paper. For example, the American Journal of Political Science (AJPS) 
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Fig. 9  Types of workflows in research analyses.
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requires authors to provide all the research material necessary to support the paper claims. Upon acceptance, 
the research material submitted by authors is verified to ensure that they produce the reported results20,21. From 
Fig. 10 we see that the journals with the strictest policies (Political Science Research and Methods, AJPS, and PA) 
have the highest re-execution rates (Fig. 10a shows aggregated result per dataset, and Fig. 10b shows file-level 
results). Therefore, our results suggest that the strictness of the data sharing policy is positively correlated to the 
re-execution rate of code files.

RQ 8. How do release dates of R and datasets impact the re-execution rate?  The datasets in our 
study were published from 2010 to July 2020 (Table 2), which gives us a unique perspective in exploring how the 
passing of time affects the code. In particular, R libraries are not often developed with backward compatibility, 
meaning that using a different version from the one used originally might cause errors when re-executing the 
code. Furthermore, in some cases, the R software might not be compatible with some versions of the libraries.

Considering the release years of R versions (Table 3), we examine the correlation in the success rates between 
them and the release year of the replication package. We find that R 3.2, released in 2015, performed best with 
the replication packages released in 2016 and 2017 (Fig. 11a). Such a result is expected because these replication 
packages were likely developed in 2015, 2016, and 2017 when R 3.2 was frequently used. We also see that it has 
had a lower success rate in recent years. We observe that R 3.6 has the highest success rate per year (Fig. 11b). 
This R version likely had some backward compatibility with older R subversions, which explains its high success 
rate in 2016 and 2017. Lastly, R 4.0 is a recent version representing a significant change in the software, which 
explains its generally low success rate (Fig. 11c). Because R 4.0 was released in summer 2020, likely none of 
the examined replication packages originally used that version of the software. It is important to note that the 
subversion R 3.6 was the last before the R 4.0 (i.e., there was no R 3.7 or later subversions). All in all, though we 
see some evidence of backward compatibility, we do not find a significant correlation between the R version and 
the release year of a replication package. A potential cause may be the use of incompatible library versions in 
our re-execution step as the R software automatically installs the latest version of a library. In any case, our result 

(a)

(b)

Fig. 10  Re-execution success rate per journal Dataverse collection. In the brackets are the number of datasets 
and the number of R files, respectively.

Publication year 2010 2014 2015 2016 2017 2018 2019 2020

Dataset count 1 2 90 284 335 493 555 241

Table 2.  Dataset publication date.

R version Release date

R 3.2.1 June, 2015

R 3.6.0 April, 2019

R 4.0.1 June, 2020

Table 3.  Release date of used R versions.
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highlights that the execution environment evolves over time and that additional effort is needed to ensure that 
one can successfully recreate it for reuse.

Looking at the combined result from Fig. 11d, we are unable to draw significant conclusions on whether the 
old code had more or fewer errors compared to the recent code (especially considering the sample size per year). 
Similarly, from 2015 to 2020, we do not observe significant changes in the dataset size, the number of files in the 
dataset, nor the number of R code files, which remain around reported values (see RQ 1). However, we see that 
the datasets use an increasing number of (unique) libraries over time, i.e., from an average of 6 in 2015 to about 
9 in 2020.

RQ 9. What is the success rate per research field?  The Harvard Dataverse repository was initially 
geared toward social science, but it has since become a multi-disciplinary research data repository. Still, most of 
the datasets are labeled’social science,’ though some have multiple subject labels. To avoid sorting the same dataset 
into multiple fields, if a dataset was labeled both “social science” and “law,” we would keep only the latter. In other 
words, we favored a more specific field (such as “law”) and chose it over a general one (like “social science”) when 
that was possible.

(a) (b)

(c) (d)

Fig. 11  Re-execution success rates per year per R software version.

Fig. 12  Success rate per research field.
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The re-execution rates per field of study are shown in Fig. 12. The highest re-execution rates were observed 
for the health and life sciences. It may be that medical-related fields have a stronger level of proof embedded in 
their research culture. Physics had the lowest re-execution rate, though due to the low sample size and the fact 
that Dataverse is probably not the repository of choice in physics, we cannot draw conclusions about the field. 
Similarly, we cannot draw conclusions for many of the other fields due to the low sample size (see the number of 
R files in the brackets), and therefore, the results should not be generalized.

RQ 10. How does the re-execution rate relate to research reproducibility?  Research is reproduc-
ible if the shared data and code produce the same output as the reported one. Code re-execution is one of the 
essential aspects of its quality and a prerequisite for computational reproducibility. However, even when the code 
re-executes successfully in our study, it does not mean that it produced the reported results. To access how the 
code re-execution relates to research reproducibility, we select a random sample of three datasets where all files 
were executed successfully and attempt to compare its outputs to the reported ones. There are 127 datasets where 
all R files re-executed with success (Table 4).

The first dataset from the random sample is a replication package linked to a published paper at the Journal 
of Experimental Political Science22. It contains three R files and a Readme, among other files. The Readme 
explains that each of the R files represents a separate study and that the code logs are available within the data-
set. Comparing the logs before and after code re-execution would be a good indication of its success. After 
re-executing two of the R files, we find that the log files are almost identical and contain identical tables. The 
recreated third log file nearly matched the original, but there were occasional discrepancies in some of the dec-
imal digits (though the outputs were in the same order of magnitude). Re-executing the third R file produced a 
warning that the library SDMTools is not available for R 3.6, which may have caused the discrepancy.

The second dataset from the random sample is a replication package linked to a paper published at Research 
& Politics23. It has a single R file and a Readme explaining that the script produces a correlation plot. According 
to our results, it should be re-executed with R 3.2. The R file prints two correlation coefficients, but it is unable 
to save the plot in the Docker container.

The final dataset from our sample follows a paper published at the Review of Economics and Statistics24. It 
contains two R files and a Readme. One of the R files contains only functions, while the other calls the functions 
file. Running the main R file prints a series of numbers, which are estimates and probabilities specified in the 
document. However, the pop-up plotting functions are suppressed due to the re-execution in the Docker con-
tainer. The code does not give errors or warnings.

While successful code re-execution is not a sufficient measure for reproducibility, our sample suggests that it 
might be a good indicator that computational reproducibility will be successful.

Limitations of the Study
Though this study is framed around pre-defined research questions, it has certain limitations in answering them 
due to its automatized and large-scale nature, which cannot detect the nuances in research code. For instance, 
code re-execution is a necessary but not sufficient requirement for reproducibility. Re-executable code may 
produce a different result than the reported one and be a “false positive” in our dataset. However, it is likely that 
small changes in the re-execution would also result in a higher success rate. In some cases, the code would not 
fail to complete if it was re-executed in RStudio or had a minor change in file paths. In particular, we observe 
numerous errors related to directory paths, ranging from system encoding to accessing unavailable file directo-
ries. The issue is partially solved with the use of basename function in the code cleaning stage. All things con-
sidered, we note that our automated study has a comparable success rate to the reported manual reproducibility 
studies25,26, which gives strength to the overall significance of our results. Though conducting a reproducibility 
study with human intervention would result in more sophisticated findings, it is labor-intensive on a large scale. 
We should strive toward enabling reproducibility studies with automation while using existing standards like 
machine-readable FAIR data27 and code28,29, and this paper provides recommendations toward that goal.

Even though it may appear that we should have tested the code with a higher number of R software versions, 
we believe that our results would not have been drastically different. Indeed this is a limitation of all R software 
versions, as each would by default try to install the latest version of R libraries. As a result, the research code 

Outcomes Dataset count

Only success 127

Only error 654

Only TLE 684

Success & error 167

Success & TLE 215

Error & TLE 143

Success, error & TLE 114

Total 2085

Table 4.  Re-execution results combination per dataset. For example, there are 215 datasets that contain 
only’success’ and’TLE’ as outputs.
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would fail if the R version and the library version were not compatible. Even if the library was successfully 
installed, it might not work as expected if the author used an earlier version.

Some of the limitations were imposed by the number of resources we had on the AWS cloud. For instance, 
there is a large count of TLE values in our results even though we set the time limitation to be 1 hour per R file 
and 5 hours per dataset. The main cause of depleting the AWS resources was a choice of a large EC2 instance for 
the re-execution. In hindsight, these instances were excessive for this type of study, and we should have used 
small to medium-sized instances.

Finally, one might consider a limitation that we use datasets from a single source. While code repositories 
such as GitHub are used for software development, temporary projects, research, education, and more, the data-
sets published on Harvard Dataverse are primarily created for research purposes. Furthermore, the data curation 
team at Harvard vets all published datasets to maintain its data and research focus. Therefore, this study provides 
an insight into researchers’ coding practices in R, and for that reason, it required a research-focused repository 
such as Dataverse.

Best Practices and Recommendations
In this study, we saw that many errors in research code could be prevented with basic good practices. Extensive 
guides on code practices have been published30–34 and are available online35. However, based on our results, we 
provide the following core recommendations for the researchers who use R:

	 1.	 Library versions in a project should be captured ideally by using the renv package. Otherwise, you may use 
a DESCRIPTION file or install.R or include the output of sessionInfo() from the researcher’s R 
session.

	 2.	 Use relative file paths in your code. Absolute (or full) file paths are a frequent cause of error when re-exe-
cuting code on a new file system.

	 3.	 Workflow capture and management methods such as R Markdown, drake, and its successor, targets 
will help to automate your code and specify the correct execution sequence.

	 4.	 Use Docker to document your runtime environment in a machine-readable way, and to ensure others can 
recreate your computational environment with all the necessary dependencies. For instance, the Rocker 
Project36 (https://www.rocker-project.org) provides widely used Docker images for R across different 
applications.

	 5.	 Test your code in a clean environment before sharing or publishing it, as it could help you identify depend-
encies and missing files.

	 6.	 Use free and open-source software whenever possible, as proprietary software can hinder transparency and 
reproducibility of your research.

Data and software repositories aim to provide high-quality resources that can be leveraged for further 
research. The following are our recommendations for data repository operators and curators:

	 1.	 Capturing re-execution commands for each research dataset would be immensely helpful for reusers. It 
would resolve the ambiguity of the file execution order (workflow) and showcase its input arguments. Sup-
port for metadata fields or files capturing such commands does not currently exist but could be incorporat-
ed into dataset metadata at the repository.

	 2.	 Data repository integration with reproducibility platforms (such as Code Ocean37,38, Whole Tale39, Jupyter 
Binder40) and Renku (https://datascience.ch/renku) could help capture library dependencies and test the 
code before it is published. It could be implemented as a part of the research submission workflow41. These 
tools use container technology that has been deemed valuable for preserving code42.

	 3.	 Creating a working group that would support various aspects of reproducible research, investigate state 
of the art, and improve the quality of shared code would be beneficial. At Dataverse, we have created a 
Software, Workflows, and Containers working group, which gathers experts, identifies community-wide 
problems, prioritizes them, and implements solutions in the Dataverse software.

Finally, our results suggest that journal data policy strictness positively correlates with the observed code 
re-execution rate. Therefore, journals play a critical role in making scholarly communication successful, and 
they have the power to require that the underlying data and code accompany articles. Our recommendations 
for the journal editors:

	 1.	 Consider implementing a simple review of all deposited material if a code verification is infeasible for your 
journal.

	 2.	 Create a reproducibility checklist that include code best practices (as recommended above) and test-
ing code re-execution in a clean environment to make the submission and review process more 
straightforward43–45.

	 3.	 Consider recommending the use of certain libraries or tools that facilitate code automation and 
re-execution.

Though our study primarily aimed to identify code re-execution and quality issues, the developed AWS pipe-
line can find its use outside of the study boundaries. For instance, the pipeline can be transformed into a GitHub 
Action (https://github.com/features/actions) that helps researchers test their code with every new commit. As 
a result, execution errors would be promptly identified and fixed. Data repositories and journals could also 
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incorporate the pipeline at code upload on their respective platforms. That way, the code would be automatically 
re-executed before it reaches editors, reviewers, curators, or reusers, who could then make decisions based on 
the re-execution result and code analysis. However, deploying such a pipeline would require additional costs 
for computation and may present a hurdle for users releasing open data. Therefore, for these infrastructures, 
it could be viable as an optional feature rather than a submission requirement. We explore some aspects of this 
use in follow-up works46.

Related Work
Claims about a reproducibility crisis attracted attention even from the popular media, and many studies on 
the quality and robustness of research results have been performed in the last decade2,3. Most reproducibility 
studies were done manually, where researchers tried to reproduce previous work by following its documentation 
and occasionally contacting original authors. Given that most of the datasets in our study belong to the social 
sciences, we reference a few reproducibility studies in this domain that emphasize its computational component 
(i.e., use the same data and code). Chang and Li attempt to reproduce results from 67 papers published in 13 
well-regarded economic journals using the deposited supplementary material26. They successfully reproduced 
33% of the results without contacting the authors and 43% with the authors’ assistance. Some of the reasons for 
the reduced reproducibility rate are proprietary software and missing (or sensitive) data. Stodden and collabo-
rators conduct a study reporting on both reproducibility rate and journal policy effectiveness25. They look into 
204 scientific papers published in the journal Science, which previously implemented a data sharing policy. The 
authors report being able to obtain resources from 44% of the papers and reproduce 26% of the findings. They 
conclude that while a policy represents an improvement, it does not suffice for reproducibility. These studies 
give strength to our analysis as the success rates are comparable. Furthermore, by examining multiple journals 
with various data policy strictness, we corroborate the finding that open data policy is an improvement but less 
effective than code review or verification in enabling code re-execution and reproducibility.

Studies that focus primarily on the R programming language have been reported. Konkol and collaborators 
conducted an online survey among geoscientists to learn of their experience in reproducing prior work47. In 
addition, they conducted a reproducibility study by collecting papers that included R code and attempting to 
execute it. Among the 146 survey participants, 7% tried to reproduce previous results, and about a quarter of 
those have done that successfully. For the reproducibility part of the study, Konkol and collaborators use RStudio 
and a Docker image tailored to the geoscience domain. They report that two studies ran without any issues, 
33 had resolvable issues, and two had issues that could not be resolved. For the 15 studies, they contacted the 
corresponding authors. In total, they encountered 173 issues in 39 papers. While we cannot directly compare 
the success rate due to the different approaches, we note that much of the reported issues overlap. In particular, 
issues like a wrong directory, deprecated function, missing library, missing data, and faulty calls that they report 
are also frequently seen in our study.

Large-scale studies have the strength to process hundreds of datasets in the same manner and examine com-
mon themes. Our study is loosely inspired by the effort undertaken by Chen48 in his undergraduate coursework, 
though our implementation, code-cleaning and analysis goals differ. Pimentel and collaborators retrieved over 
860,000 Jupyter notebooks from the Github code repository and analyzed their quality and reproducibility49. 
The study first attempted to prepare the notebooks’ Python environment, which was successful for about 788,813 
notebooks. Out of those, 9,982 notebooks exceeded a time limit, while 570,476 failed due to an error. A total of 
208,323 of the notebooks finished their execution successfully (24.11%). About 4% re-executed with the same 
result, which was inferred by comparing it with the existing outputs in the notebook. This result is comparable 
to the re-execution rate of 27% in our previous analysis of Python code from Harvard Dataverse repository6. 
We also note that Pimentel and collaborators performed the study on diverse Jupyter notebooks, which often 
include prototype development and educational coding. Our study is solely based on research code in its final 
(published) version. The studies are not directly comparable due to the use of different programming languages. 
However, we achieve a comparable result of 25% when re-executing code without code cleaning. Also, the fact 
that the most frequent errors relate to the libraries in both studies signals that both programming languages face 
similar problems in software sustainability and dependency capture.

Technical Implementation of Code Cleaning
Our code cleaning implementation aims to solve some of the most common errors and ensure that used libraries 
are installed. All R files are converted to ASCII (to reduce the chance of syntax error caused by symbols from 
other operating systems), scanned and modified if a common problem is detected. Our code cleaning approach 
is relatively simple to minimize the chance of “breaking the code”, and we do not use static analysis packages 
such as goodpractice or lintr as they do not make changes in the code automatically.

While some R users set their working directory with the setwd function, this often causes errors if the 
directory path cannot be found. This is one of the commands that our code cleaning implementation targets. 
It detects the setwd function and replaces it with a new one that makes the current directory with the down-
loaded files, a working directory.

Other file path errors were solved with the use of the basename function. The basename function ignores the 
path and the path separators. For example, if a long file path is used in the read.csv function, it will be ignored, 
and only the name of the target file will be used. Such an approach works in this scenario because all files from 
the replication package are downloaded one by one and stored in the same directory. In the implementation, a 
code line like: file.path(“/Dropbox/my_datafile.csv”) would therefore be replaced with:

basename(file.path(“/Dropbox/my_datafile.csv”))
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In the R programming, all libraries can be installed directly from the script using the install.packages com-
mand. Therefore if we detect that a needed library was not present in the working environment, we should add 
this command to install it and avoid an error. We tested a few approaches to identify the used and pre-installed 
libraries. Ultimately, using a combination of the functions require and install.packages proved to 
be the best solution (i.e., only if the library cannot be loaded with require it is installed from the code). The 
benefit of using the “require” function is that it returns a logical value by default, or “true” if the package is loaded 
and “false” if it is not. Therefore, we could check if the package is present and only install it if it is not. Such an 
approach saved time and reduced the chances of errors caused by duplicated code. As an example from the 
implementation, a line library(dplyr) would be replaced with:

if (!require(“dplyr”)) install.packages(“dplyr”)

Usage of the:: method in R allows access to a single function from a specific package. For instance, to use 
intersect from the dplyr package, one would invoke it as dplyr::intersect. It is important to note 
that the package must be installed in the environment to be available using this method, but it does not have to 
be loaded in the R script. Though all re-executions were conducted in an environment that included r-essentials 
(or about 200 most popular R packages), we have not implemented a pre-detection of packages that used the:: 
method. We expect that including it would somewhat (likely marginally) improve the results.

The US CRAN (http://cran.us.r-project.org) was set as default to avoid the CRAN errors.

Data availability
The study uses several collected datasets, which are then merged into derived datasets and used for the final 
analysis. All data records are stored in a simple CSV (or text) file format and can be opened with a text editor. 
The datasets were collected in the AWS re-execution step unless otherwise indicated. The collected datasets are:

• run_log_r[VERSION]_[NO_]env provides information of whether or not an R code file executed 
with an error for three versions of R (3.2, 3.6 and 4.0) and in two different environments (before and after code 
cleaning step).

• run_log_r[VERSION]_[NO_]env[_DOWNLOAD] provides information whether all files from a rep-
lication package downloaded without a checksum error.

• rfile_stats gathers information on each R code file, such as the number of code lines, code comments, 
functions, classes, tests and file encoding.

• rpackage_stats gathers information on the replication package such as total comments, total libraries, 
size, list of files and list of used libraries.

• readability_metrics captures research code readability metrics such as the average number of peri-
ods, commas, spaces, parenthesis, which was explored in a follow-up publication at ref. 46.

• all_metadata captures the collection (journal or other) and the academic field of each replication data-
set. Retrieved from Harvard Dataverse directly.

• journal-policy-survey gathers information on the strictness of data sharing policies at academic 
journals that have their own collections on Harvard Dataverse. Collected manually.

All data records are freely available on the Harvard Dataverse repository at https://doi.org/10.7910/DVN/
UZLXSZ under CC0 license9. The same copy of data files is available on GitHub at https://github.com/atrisovic/
dataverse-r-study.

Code availability
To develop and execute the analysis code, we used Python 2.7. The code is released as a single version, which was 
used for both data collection and analysis. All Python dependencies with their versions are captured in a text file 
requirements.txt at the root directory. All code files can be freely accessed on on GitHub at https://github.
com/a trisovic/dataverse-r-study. The code is released under MIT license.
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