
Unleashing Unprivileged eBPF Potential
with Dynamic Sandboxing

Soo Yee Lim
University of British Columbia
Vancouver, British Columbia

Canada
sooyee@cs.ubc.ca

Xueyuan Han
Wake Forest University

Winston-Salem, North Carolina
USA

vanbasm@wfu.edu

Thomas Pasquier
University of British Columbia
Vancouver, British Columbia

Canada
tfjmp@cs.ubc.ca

ABSTRACT
For safety reasons, unprivileged users today have only lim-
ited ways to customize the kernel through the extended
Berkeley Packet Filter (eBPF). This is unfortunate, especially
since the eBPF framework itself has seen an increase in scope
over the years. We propose SandBPF, a software-based ker-
nel isolation technique that dynamically sandboxes eBPF
programs to allow unprivileged users to safely extend the
kernel, unleashing eBPF’s full potential. Our early proof-of-
concept shows that SandBPF can effectively prevent exploits
missed by eBPF’s native safety mechanism (i.e., static ver-
ification) while incurring 0%-10% overhead on web server
benchmarks.
Note: This is a preprint version of the paper accepted at
the 1st SIGCOMM Workshop on eBPF and Kernel Exten-
sions [28].

KEYWORDS
eBPF, Dynamic Sandbox, Software Fault Isolation, Binary
Rewriting

1 INTRODUCTION
The extended Berkeley Packet Filter (eBPF) enables users
to extend the Linux kernel’s capabilities without modify-
ing its source code. To ensure safe extension of the kernel,
eBPF uses a verifier to statically verify the safety of an eBPF
program before it is executed in the kernel. Unfortunately,
known vulnerabilities allow an eBPF program to circum-
vent static verification checks, which enables a malicious
eBPF program to access arbitrary kernel memory [5, 7–9] or
execute arbitrary kernel code [6].
Most Linux distributions [17, 18] err on the side of cau-

tion by allowing only privileged users to run eBPF programs.
However, this restriction significantly limits the ability for
non-privileged applications to customize the kernel. For ex-
ample, it makes adopting emerging eBPF technologies to
support the implementation of specialized audit [29], sched-
uling [26], and synchronization policies [37] in the kernel
for a particular application or container difficult.

An alternative approach is to formally verify that the eBPF
verifier correctly guarantees the absence of all possible at-
tacks. The eBPF framework relies primarily on the verifier to
ensure the safety of an eBPF program. The verifier inspects
the program at load time, so it imposes no run-time perfor-
mance overhead. However, prior incidents [4, 7–9, 11, 12]
have repeatedly shown that a verified eBPF program is not
always safe. The complexity of eBPF programs makes verify-
ing these programs difficult, resulting in both specification
bugs [4] (i.e., missing checks for a specific type of vulnerabil-
ities) and implementation bugs [7–9, 11, 12] (i.e., incomplete
checks for a supposedly checked vulnerability) in the verifier.
As we elaborate in §2, formally verifying the eBPF verifier
cannot simultaneously resolve both types of bugs.

In light of these challenges, we take a completely different
approach to enabling unprivileged eBPF programs to safely
run in the Linux kernel. We leverage software fault isolation
(SFI) [41], a software-based kernel isolation technique, and
binary rewriting to dynamically sandbox an eBPF program.
Our approach, which we name SandBPF, prevents an eBPF
program from committing a memory safety violation at run
time by confining all memory accesses to within the eBPF
sandbox and limiting eBPF control transfers to only valid call
targets. The proof-of-concept implementation of SandBPF
shows that dynamic sandboxing is effective in catching safety
bugs that are missed by the verifier while incurring reason-
able performance overhead in realistic settings: e.g., 0-10%
on web server macrobenchmarks. These results are encour-
aging, especially since we took a pure software approach
(as a first step to demonstrate efficacy), rather than lever-
aging hardware support for isolation [2, 3, 35] to improve
performance, which we leave for future work.

Contributions.
• We study safety mechanisms in eBPF to motivate the
need for dynamic isolation (§2).

• We demonstrate that dynamic sandboxing is a viable
solution to address eBPF security concerns. Our changes
are a self-contained extension to the kernel and require
no modification to existing workflows or programs
(§4).

1



Conference’17, July 2017, Washington, DC, USA Lim et al.

62%

Verifier (36)

8% JIT Compiler (4)

30% Miscellaneous (16)

Figure 1: A tally of eBPF-related CVEs from 2010 to
2023. There are a total of 56 CVEs, the majority of
which were discovered in the verifier.

• We evaluate the performance overhead of our proof-
of-concept implementation (§5).

• We discuss the limitations of our implementation and
propose promising future research directions (§6).

Disclaimer: This work does not raise any ethical issues.

2 MOTIVATION
The eBPF verifier is the primary safety mechanism in eBPF,
but it has also been a major source of vulnerabilities (Fig-
ure 1). Attackers can bypass the verifier and run malicious
eBPF programs by exploiting specification or implementa-
tion bugs in the verifier. The verifier essentially works as a
blocklist of prohibited behaviors; therefore, a specification
bug exists when a specific type of exploitable vulnerabilities
is not considered in the blocklist. For example, early versions
of the verifier neglected alignment checks for stack point-
ers, which allowed adversaries to perform denial-of-service
attacks [4]. Over the years, the verifier has grown signifi-
cantly to mitigate specification bugs. Figure 2 shows that it
has more than doubled in the last four years. Unfortunately,
the ever-growing size and complexity makes it formidable
to formally verify the verifier in its entirety to eliminate
any implementation bugs. To the best of our knowledge, no
existing work has proved the completeness of the verifier’s
specification or managed to formally verify its current (likely
still incomplete) implementation. As a result, the Linux com-
munity has largely dismissed unprivileged eBPF programs
as an unsafe feature that should not be used [16], despite
their great potential.

v5
.0

v5
.1

v5
.2

v5
.3

v5
.4

v5
.5

v5
.6

v5
.7

v5
.8

v5
.9

v5
.10

v5
.11

v5
.12

v5
.13

v5
.14

v5
.15

v5
.16

v5
.17

v5
.18

v5
.19 v6
.0

v6
.1

v6
.2

v6
.3

0

4,000

8,000

12,000

16,000

20,000

Kernel Version

Lo
C

Figure 2: The evolution of the verifier’s size in lines of
code (LoC) from v5.0 in March 2019 (7,306 LoC) to v6.3
in April 2023 (17,904 LoC).

We propose to rely on a dynamic enforcement mechanism,
by rewriting the binary code to insert run-time checks, to pro-
tect memory accesses and preserve control flow integrity. Note
that the verifier performs checks beyond memory accesses
and control flow integrity (e.g., program termination). Thus,
we still consider the verifier to be an important safety compo-
nent of eBPF. However, our work can simplify the verifier’s
implementation (by removing memory access and control
flow integrity checks), thereby reducing its codebase and
easing its formal verification efforts. Our goal is to demon-
strate the feasibility of dynamic enforcement; therefore, we
leave the simplification of the verifier to future work.

3 THREAT MODEL
We assume that an adversary can run unprivileged eBPF
programs. The adversary has no root access and thus is un-
able to load kernel modules or modify kernel code. However,
they can exploit eBPF vulnerabilities to gain arbitrary read
or write access to kernel memory, or execute arbitrary kernel
code. We assume a W⊕X (write xor execute) enabled system,
so the adversary cannot overwrite any executable pages.
Our trusted computing base includes the OS kernel (ex-

cluding the eBPF verifier and the JIT compiler) and SandBPF,
whose correctness we plan to fully verify in future work. As
shown in Figure 3, both the data of an eBPF program that
resides in the sandbox provided by SandBPF and the orig-
inal eBPF code are assumed to be untrusted. On the other
hand, we assume SandBPF’s instrumentation and its own
data stored outside of the sandbox (see details in §4) to be

2



Unleashing Unprivileged eBPF Potential Conference’17, July 2017, Washington, DC, USA

per core

Metadata

Heap Info Mask Info

Sandbox
Context

Stack

Kernel Object Copy
Kernel Object Copy
Kernel Object Copy

Heap

Kernel Object
Kernel Object
Kernel Object

per program

Call Capabilities

eBPF Code

SandBPF Instrumentation

Trusted

Untrusted

SandBPF Instrumentation

Figure 3: Illustration of the SandBPF design and its
(un)trusted components.

Clang 
Compiler

eBPF
Program

eBPF 
Bytecode

eBPF
Native 
Code

eBPF 
Verifier

JIT 
Compiler

eBPF 
Maps

Userspace
Process

eBPF
Hook

User Space

Kernel

Binary 
Rewriting

Figure 4: The workflow of a dynamically sandboxed
eBPF program. SandBPF’s binary rewriting is trusted.

trusted. We do not consider attacks originated from any-
where else in the kernel except eBPF. Note that SandBPF
performs instrumentation on the final output of eBPF’s JIT
compilation; therefore, it does not rely on the correctness
the JIT compiler or the verifier. Like in prior kernel isola-
tion work [20–22, 31–34, 36, 38, 40], side-channel attacks are
orthogonal and thus out of scope.

4 DESIGN & IMPLEMENTATION
Keeping our security mechanism completely transparent to
eBPF programmers and ensuring compatibility with existing
eBPF programs are the paramount design goals of SandBPF.
As such, SandBPF is minimally invasive, reusing the existing
eBPF pipeline and extending only what is necessary. Specifi-
cally, SandBPF adds binary rewriting only at the end of the
JIT compilation, as shown in Figure 4. This allows experi-
enced users to develop eBPF programs like they normally do,
while new users can rely on existing eBPF documentation.

Our SandBPF proof-of-concept leverages software fault
isolation (SFI) [41] to create a safe sandbox to execute eBPF
programs. SFI is a software-based isolation technique that
transforms memory-access and control-transfer instructions
to prevent a program from accessing memory outside a des-
ignated region. Figure 3 shows our SFI design. SandBPF en-
sures memory safety and control-flow integrity via address
masking and trampolined control transfers, respectively. The
former restricts an eBPF program’s access to only the mem-
ory within its address space, and the latter enforces that the
program call only entry points on its allowlist (based on
its capabilities) when jumping outside of its domain. These
checks together confine an eBPF program to its own sandbox
at run time.
In the rest of this section, we discuss SandBPF’s design

in detail. In §6, we discuss the limitations of our current
implementation.

4.1 Memory Access Checks
SandBPF enforces memory safety by masking the target ad-
dresses of all read and write instructions, so that all mem-
ory accesses, including the out-of-bounds ones, always fall
within the data region of an eBPF domain. To avoid manag-
ing multiple address masks for data residing in different parts
of the kernel address space, we reserve one memory page in
each processor core to store the data of an eBPF program,
as shown in Figure 3. We disable interrupt and preemption
during the execution of an eBPF program, so each core runs
only one eBPF program at a time.
We emit an address masking check on every read and

write instruction. An address masking check consists of a
bitwise-and instruction to clear the upper bits of the desti-
nation address, and subsequently a bitwise-or instruction
to set the destination address to the memory region of an
eBPF sandbox. For example, consider a 2048-byte aligned
sandbox memory allocated at address 0xDEADB800, and two
pre-computed address masks (stored in the sandbox meta-
data as show in Figure 3): and_mask (0x7FF) and or_mask
(0xDEADB800). If an attacker attempts to perform an out-
of-bounds memory access at 0xDEAF1234, address masking
would transform the target address to 0xDEADBA34, which
falls within the sandbox. Thus, address masking guarantees
that all memory accesses remain contained in the sandbox.

4.2 Accessing Kernel Objects
An eBPF program needs to access a kernel object (1) when
its input pointer (i.e., “context”) references a kernel object
on program invocation, or (2) when an eBPF helper function
returns a pointer to a kernel data structure. In the first case,
we mirror the content of the data structure in the context

3



Conference’17, July 2017, Washington, DC, USA Lim et al.

Table 1: The number of checks inserted and executed
by SandBPF in our example programs.

Injected Executed
Program Address Masking Trampoline Address Masking Trampoline

XDP 2 1 2 1
Socket Filter 12 10 12 10
Katran 641 42 35-37 1-2

region of the sandbox for the duration of the program execu-
tion. In the second case, we dynamically allocate heap space
in the sandbox to store a copy of the object. As a concrete
example, consider the eBPF ring buffer. We modify the ring
buffer’s reserve/commit mechanism to protect its access. On
bpf_ringbuf_reserve, we create a buffer on the sandbox
heap corresponding to the reserved region. Mapping infor-
mation between the heap buffer and the reserved region is
stored in the sandbox metadata, which is not accessible by
the eBPF program. On bpf_ringbuf_commit, the sandbox
copy is synced with its corresponding kernel object. This
mechanism can be used for all similar operations. We discuss
some security-related issues in §6.

4.3 Control Flow Integrity (CFI)
We enforce CFI by redirecting all call instructions to a tram-
poline that checks the validity of the destination operand.
By design, eBPF programs can interact with the kernel only
through an allowlist of helper functions. As different eBPF
program types have access to different sets of helper func-
tions, we associate each eBPF program type with a set of
capabilities corresponding to the helper functions it is al-
lowed to call. In other words, the capabilities specify the
valid entry points for control transfers in an eBPF program,
thereby preventing the program from executing arbitrary
code in the kernel. The capabilities are computed once for
every program type at load time and stored in a hash table to
provide an𝑂 (1) search time. SandBPF dynamically checks if
the eBPF program has the capability to call the target.

5 EVALUATION
We implemented SandBPF for Linux 5.18.7. All experiments
were performed on a bare metal machine with 32GiB of
RAM and an 8-core, 2.3GHz Intel Core i7 CPU. We disabled
hyperthreading, turbo boost, and frequency scaling to re-
duce variance in performance benchmarking. We ran each
experiment on two kernel configurations: (1) The vanilla
configuration runs on the unmodified kernel, as our baseline.
(2) The sandbox configuration runs on the same kernel but
is instrumented with SandBPF on eBPF programs.

XDP Socket Filter Katran
0

2,000

4,000

6,000

na
no

se
co
nd

s

Control Flow Integrity
Memory Access

Sandbox Management
eBPF Program

Figure 5: Breakdown of the overhead introduced by
SandBPF on our three example eBPF programs.

5.1 Understanding Overhead
Table 1 shows the number of checks SandBPF inserted into
sandboxed eBPF programs. Note that the number of inserted
instrumentation points does not directly influence perfor-
mance; rather, performance hinges on the number of checks
actually executed at run time, which in turn depends on exe-
cution paths. In a complicated eBPF program, e.g., the Katran
load balancer [24], we often observe fewer than 10% of the
inserted checks being executed at run time.
In Figure 5, we run three eBPF programs: (1) The XDP

program logs the size of each ingress packet entering a net-
working device. (2) The Socket Filter program monitors
packets by attaching itself to the sock_queue_rcv_skb()
function. It exchanges packet information with a userspace
process through an eBPF ring buffer. (3) The Katran program
performs load balancing and is attached to the NIC as an xdp
program. Socket Filter and XDP are programs provided
as part of libbpf-bootstrap [13], a set of publicly avail-
able eBPF example programs. We decompose the overhead
introduced by SandBPF alongside three categories:
Sandbox Management: This corresponds to sandbox ini-
tialization and shutdown on the execution of an eBPF pro-
gram (e.g., preparing metadata, copying program parameters,
switching execution context in and out of the sandbox, etc.).
Memory Access: SandBPF instruments both read and write
instructions to protect the confidentiality and integrity of

4



Unleashing Unprivileged eBPF Potential Conference’17, July 2017, Washington, DC, USA

Table 2: Microbenchmark measuring the impact of
SandBPF on network communications running for 360s.
(sf: send file, c→s: client to server, s→c: server to client).

XDP Program Socket Filter Program
Test Vanilla SandBPF Vanilla SandBPF

Unidirectional throughput (MB/s)
TCP sf 40,588 35,363 (13%) 68,394 52,655 (23%)
TCP c→s 36,740 33,374 (9%) 62,112 45,392 (27%)
TCP s→c 36,626 33,383 (9%) 62,674 45,628 (27%)
UDP s→c 48,019 46,226 (4%) 81,214 60,850 (25%)

Round-trip transaction rate (transaction/s)
TCP 102,169 86,416 (15%) 135,713 94,611 (30%)
UDP 118,409 101,826 (14%) 152,485 104,900 (31%)

kernel memory. This differs from most SFI systems [20, 21,
21, 31, 41] that instrument only writes for performance.
Control Flow Integrity: This overhead is due mostly to the
cost of linked list traversal when SandBPF searches through a
hash table of call capabilities. We plan to optimize SandBPF’s
CFI checking performance using a custom data structure.
We show the overhead in Figure 5. The overall overhead

is a function of the number of checks executed in these
programs:

𝐶𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐶𝑚𝑒𝑚 (𝑁𝑚𝑒𝑚) +𝐶𝑡𝑟𝑎𝑚 (𝑁𝑡𝑟𝑎𝑚) +𝐶𝑚𝑎𝑛𝑎𝑔𝑒

where the overhead of memory access checks (𝐶𝑚𝑒𝑚) and
that of CFI checks using the trampoline mechanism (𝐶𝑡𝑟𝑎𝑚)
are functions of the numbers of executed checks, 𝑁𝑚𝑒𝑚 and
𝑁𝑡𝑟𝑎𝑚 , respectively. Both 𝑁𝑚𝑒𝑚 and 𝑁𝑡𝑟𝑎𝑚 correlate with the
complexity of the programs themselves. On the other hand,
the overhead of sandbox management (𝐶𝑚𝑎𝑛𝑎𝑔𝑒 ) is constant.
The XDP and Socket Filter programs perform tracing,

while Katran performs computations tomake load-balancing
decisions. XDP and Socket Filter spend the majority of
their time in helper functions, which are not instrumented, re-
sulting in relatively low overhead. On the other hand, Katran
spend most of its time performing computation within in-
strumented code, resulting in a higher number of memory
access checks and therefore a proportionally larger overhead.

5.2 Microbenchmark
We use netperf [15] to measure the overhead imposed by
SandBPF on network communications.We run XDP and Socket
Filter1 on both kernel configurations and measure the uni-
directional throughputs and round-trip latencies for TCP and
UDP. We see in Table 2 that the overhead ranges from 4%
to 33%. We note that the high overhead in the microbench-
mark results is largely the artifact of netperf stressing the

1Due to space constraints, we leave an extensive evaluation plan involving
other eBPF programs (which require more complex setups) to future work.

Table 3: Macrobenchmark measuring web server per-
formance of 20-1000 concurrent connections.

XDP Program Socket Filter Program
Test Vanilla SandBPF Vanilla SandBPF

Throughput (request/s)
Apache 20 64,591 64,526 (0%) 62,269 60,089 (4%)
Apache 100 86,190 79,638 (8%) 87,576 83,751 (4%)
Apache 200 85,614 81,749 (5%) 85,671 83,381 (3%)
Apache 500 68,329 63,691 (7%) 72,399 67,177 (7%)
Apache 1000 66,472 62,508 (6%) 71,453 66,171 (7%)
Nginx 20 49,170 45,731 (7%) 50,095 45,331 (10%)
Nginx 100 58,613 54,494 (7%) 58,797 54,029 (8%)
Nginx 200 56,581 53,051 (6%) 58,447 53,869 (8%)
Nginx 500 50,495 47,699 (6%) 54,537 50,822 (7%)
Nginx 1000 46,302 44,977 (3%) 50,651 47,734 (6%)

network interface and therefore spending most of its ex-
ecution time in kernel code that constantly triggers eBPF
events. In practice, user applications typically perform mean-
ingful computations in userspace, which would reduce the
perceived SandBPF overhead as we show in §5.3.

5.3 Macrobenchmark
To evaluate the performance implication of SandBPF at the
macro level, we select a set of macrobenchmarks (Apache and
Nginx) from the Phoronix Test Suite [27] that characterize
whole-system performance while stress-testing the network
subsystems. These web server benchmarks measure network
throughputs, which we report in Table 3. For all macrobench-
marks, we again run the XDP and Socket Filter programs
to measure SandBPF’s overhead on these workloads. We see
that SandBPF incurs no more than 10% overhead.

5.4 Security
We tested our proof-of-concept implementation against two
exploits that have publicly available source code (Table 4).
These exploits leverage eBPF vulnerabilities to violate the
confidentiality and integrity of kernel memory. Our exper-
iments show that SandBPF can successfully prevent CVE-
2021-3490 [9] and CVE-2021-4204 [10]. For example, in CVE-
2021-3490, a bounds-tracking bug in the eBPF verifier leads
to out-of-bounds access. An attacker can exploit this vul-
nerability to obtain arbitrary read and write accesses in the
kernel memory. Consequently, they can leak cred pointers
to userspace via eBPF maps and escalate privilege by over-
writing the cred structure. To test both exploits, we ported
SandBPF to the affected Linux kernel version v5.8.0-25.26.
SandBPF successfully prevented both exploits through ad-
dress masking. The attacker can no longer leak kernel point-
ers to perform subsequent malicious activity (i.e., privilege
escalation).

5



Conference’17, July 2017, Washington, DC, USA Lim et al.

Table 4: eBPF vulnerabilities that result in privilege escalation.

CVE Vulnerability Description
CVE-2021-3490 The eBPF verifier incorrectly tracks the bounds of ALU32 bitwise operations, resulting in out-of-

bounds reads and writes in the Linux kernel.
CVE-2021-4204 The eBPF verifier does not properly validate the bounds of bpf_ringbuf_submit and

bpf_ringbuf_discard inputs, allowing out-of-bounds reads and writes in kernel memory.

6 DISCUSSION & FUTUREWORK
Performance. Our primary focus is to demonstrate the
tremendous potential of using dynamic sandboxing to im-
prove eBPF security and validate our approach through a
proof-of-concept implementation. SandBPF used stock ker-
nel functions (e.g., the standardmemory allocator kmem_alloc)
and data structures (e.g., hash maps), instead of any bespoke
mechanisms to optimize its run-time performance. Moreover,
we made no use of asynchronous mechanisms, nor did we
restrict SandBPF’s access checks to only write instructions.
These “tricks” are often employed in prior work to reduce the
cost of SFI [20, 21, 21, 31, 41]. Therefore, one could consider
our current proof-of-concept implementation to be a worst-
case scenario in terms of performance. Even so, we see only
≤10% overhead from SandBPF while providing fully-fledged
memory and control flow protection on macrobenchmarks
(§5.3). This overhead is a reasonable baseline for our future
work to improve performance. For example, hardware fea-
tures, such as ARM’s Pointer Authentication Code (PAC) [1]
and Memory Tagging Extension (MTE) [2], are promising
avenues to expedite memory access checks (which constitute
most of the overhead in non-tracing tasks as discussed in
§5.1). We emphasize that at the moment, the only alterna-
tive to our approach is to entirely disable unprivileged eBPF
programs.
Security. We backported SandBPF to earlier versions of the
kernel to demonstrate its ability to safeguard vulnerabili-
ties in the verifier (§5.4). While SandBPF’s binary rewriting
approach can reduce the kernel’s attack surface, we recog-
nize that our current evaluation is insufficient, given the
innate complexity of proving the effectiveness of a sandbox-
ing technique [19]. We are in the process of designing a more
extensive evaluation methodology based on fault injection.
We note that to fully unleash the potential of unprivileged
eBPF programs, one must consider security issues beyond
the ones addressed by SandBPF through dynamic sandbox-
ing; vulnerabilities stemming from e.g., kernel namespacing
and shared resources [23, 30, 42] will also need to be tackled.
Furthermore, the verifier currently restricts an eBPF pro-
gram’s ability to modify certain attributes of some kernel
objects (e.g., sk_buff). We plan to dynamically enforce such
an restriction in the syncing mechanism described in §4.2.

Towards Simplifying the Verifier. Our approach makes it
possible to replace a subset of the verifier’s compilation-time
checks, such as memory accesses (which are difficult and
sometimes unsound to perform statically [7–9, 11, 12]), with
SandBPF’s dynamic checks. This not only simplifies the veri-
fier by obviating the need to check aspects of correctness that
have been proven hard to guarantee, but more importantly,
allows the eBPF framework to relax some constraints im-
posed on its programs (e.g., in dynamic memory allocation).
These constraints exist due to the difficulties of verifying
statically the safety of an eBPF program. There is a wealth
of opportunities to explore ways to relax eBPF constraints
to enrich its functionality, which we leave to future work.

7 RELATEDWORK
SandBPF leverages a software-based isolation technique, specif-
ically SFI, to dynamically sandbox eBPF programs. SFI in-
struments code with dynamic checks to ensure that run-time
data accesses and control flow transfers are within specified
bounds. Prior work [20, 21, 31, 39] leveraged SFI to sandbox
OS extensions such as device drivers. For example, BGI [20]
associates an access control list with each byte of memory
to specify byte-level access permissions. SandBPF instead
enforces SFI at the page level, restricting the access of a sand-
boxed eBPF program to pre-defined pages of kernel memory.
Due to performance concerns, most SFI systems [21, 31], in-
cluding BGI, do not check read instructions; as a result, they
cannot provide confidentiality guarantees. In contrast, to ac-
count for potential leakage of kernel memory to userspace,
SandBPF instruments both read and write instructions, thus
assuring both confidentiality and integrity of kernel memory.
This design decision comes at the cost of performance as
discussed in §6.
Other than SFI, prior work [43] also proposed to use im-

plicit pointer bounds information to enforce fine-grained
type and memory safety. For example, SafeDrive [43] al-
lows developers to provide type annotations that describe
pointer bounds to insert dynamic checks in device drivers.
Unlike SafeDrive, SandBPF instrumentation is completely
automated, requiring no manual annotation effort. This is
possible thanks to the relatively well-defined eBPF API and
a well-scoped set of kernel objects that an eBPF program

6



Unleashing Unprivileged eBPF Potential Conference’17, July 2017, Washington, DC, USA

is usually allowed to interact with, as compared to Linux
kernel modules or device drivers.
Recent work [25] has also proposed a new Rust-based

eBPF design. It leverages the Rust tool-chain to perform
static checks (e.g., memory safety and control-flow integrity).
In addition, it uses run-time mechanisms to enforce proper-
ties such as program termination that Rust does not natively
provide. While this approach eliminates the need for an in-
kernel eBPF verifier, it has two main drawbacks. First, the
Rust verification tool-chain must be executed by a trusted
third party before signing the eBPF programs. As a result,
this approach limits the kernel to load only eBPF programs
that are signed by trusted third parties, as the kernel itself
can no longer independently verify them. This runs con-
trary to SandBPF’s philosophy of increasing eBPF usage as
an end goal. Second, vulnerabilities in the complex Rust
ecosystem [14] take us back to the same problem with the
eBPF verifier – static analysis alone is insufficient to guaran-
tee run-time safety of eBPF programs. In other words, eBPF
extensions can exploit Rust verifier’s vulnerabilities to cor-
rupt kernel memory at run time. Therefore, we believe that
dynamic sandboxing is a key step towards unleashing the
potential of unprivileged eBPF.

8 CONCLUSION
We show that dynamic sandboxing is a viable approach to
enforce a number of security properties in eBPF programs,
complementary to the current static mechanism employed
by the eBPF verifier. Dynamic sandboxing will not replace
verification; instead, it enhances run-time safety of the kernel
to justify the (currently dismissed) support of unprivileged
eBPF programs. SandBPF, our proof-of-concept implemen-
tation based on software fault isolation, incurs reasonable
overhead. We believe that our work opens up an interesting
design space, which allows future work to bring competitive
performance improvements to this approach, particularly by
leveraging available hardware features.

ACKNOWLEDGMENT
We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC). Nous
remercions le Conseil de recherches en sciences naturelles et
en génie du Canada (CRSNG) de son soutien. This material
is based upon work supported by the U.S. National Science
Foundation under Grant CNS-2245442. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
[1] [n. d.]. ARMv8.3 Pointer Authentication. ([n. d.]). https://lwn.net/

Articles/718888/
[2] [n. d.]. ARMv8.5-A Memory Tagging Extension. Online (Accessed:

August 2, 2023). ([n. d.]). https://developer.arm.com/documentation/
102925/0100.

[3] [n. d.]. ARMv8.5-A Pointer Authentication. Online (Accessed: August
2, 2023). ([n. d.]). shorturl.at/GHM69.

[4] [n. d.]. CVE-2017-17856. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17856.

[5] [n. d.]. CVE-2020-8835. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835.

[6] [n. d.]. CVE-2021-29154. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29154.

[7] [n. d.]. CVE-2021-31440. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31440.

[8] [n. d.]. CVE-2021-33200. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33200.

[9] [n. d.]. CVE-2021-3490. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490.

[10] [n. d.]. CVE-2021-4204. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4204.

[11] [n. d.]. CVE-2022-0264. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0264.

[12] [n. d.]. CVE-2022-23222. Online (Accessed: August 2, 2023). ([n. d.]).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23222.

[13] [n. d.]. ibbpf-bootstrap. ([n. d.]).
[14] [n. d.]. Mitre: Rust CVEs. Online (Accessed: August 2, 2023). ([n. d.]).

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust.
[15] [n. d.]. Netperf. Online (Accessed: August 2, 2023). ([n. d.]). https:

//hewlettpackard.github.io/netperf/.
[16] [n. d.]. Reconsidering unprivileged BPF. Online (Accessed: August 2,

2023). ([n. d.]). https://lwn.net/Articles/796328/.
[17] [n. d.]. Security Hardening: Use of eBPF by unprivileged users has

been disabled by default. Online (Accessed: August 2, 2023). ([n. d.]).
https://www.suse.com/support/kb/doc/?id=000020545.

[18] [n. d.]. Unprivileged eBPF disabled by default for Ubuntu 20.04 LTS,
18.04 LTS, 16.04 ESM. Online (Accessed: August 2, 2023). ([n. d.]).
https://discourse.ubuntu.com/t/27047.

[19] Frédéric Besson, Sandrine Blazy, Alexandre Dang, Thomas Jensen, and
Pierre Wilke. 2019. Compiling sandboxes: Formally verified software
fault isolation. In European Symposium on Programming (ESOP’19).
Springer, 499–524.

[20] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
2009. Fast byte-granularity software fault isolation. In Symposium on
Operating Systems Principles (SOSP’09). ACM, 45–58.

[21] Ulfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and
George C Necula. 2006. XFI: Software guards for system address
spaces. In Symposium on Operating Systems Design and Implementation
(OSDI’06). USENIX, 75–88.

[22] Vinod Ganapathy, Arini Balakrishnan, Michael M Swift, and Somesh
Jha. 2007. Microdrivers: A new architecture for device drivers. Network
134 (2007), 27–8.

[23] Xing Gao, Zhongshu Gu, Zhengfa Li, Hani Jamjoom, and Cong Wang.
2019. Houdini’s escape: Breaking the resource rein of linux con-
trol groups. In Conference on Computer and Communications Security
(CCS’19). ACM, 1073–1086.

[24] Meta Incubator. [n. d.]. Katran:A high performance layer 4 load bal-
ancer. Online (Accessed: August 2, 2023). ([n. d.]). https://github.com/
facebookincubator/katran.

7

https://lwn.net/Articles/718888/
https://lwn.net/Articles/718888/
https://developer.arm.com/documentation/102925/0100
https://developer.arm.com/documentation/102925/0100
shorturl.at/GHM69
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17856
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-8835
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-29154
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31440
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33200
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4204
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0264
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-23222
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://hewlettpackard.github.io/netperf/
https://hewlettpackard.github.io/netperf/
https://lwn.net/Articles/796328/
https://www.suse.com/support/kb/doc/?id=000020545
https://discourse.ubuntu.com/t/27047
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran


Conference’17, July 2017, Washington, DC, USA Lim et al.

[25] Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V Le,
and Tianyin Xu. 2023. Kernel Extension Verification is Untenable.
In Workshop on Hot Topics in Operating Systems (HotOS’23). ACM,
150–157.

[26] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and Christos
Kozyrakis. 2021. Syrup: User-defined scheduling across the stack. In
Symposium on Operating Systems Principles (SOSP’21). ACM, 605–620.

[27] Michael Larabel and Matthew Tippett. 2011. Phoronix test suite.
Phoronix Media,[Online]. Available: http://www. phoronix-test-suite.
com/.[Accessed June 2016] (2011).

[28] Soo Yee Lim, Xueyuan Han, and Thomas Pasquier. 2023. Unleashing
Unprivileged eBPF Potential with Dynamic Sandboxing. In SIGCOMM
Workshop on eBPF and Kernel Extensions. ACM.

[29] Soo Yee Lim, Bogdan Stelea, Xueyuan Han, and Thomas Pasquier. 2021.
Secure Namespaced Kernel Audit for Containers. In Symposium on
Cloud Computing (SoCC’21). ACM, 518–532.

[30] Congyu Liu, Sishuai Gong, and Pedro Fonseca. 2023. KIT: Testing OS-
Level Virtualization for Functional Interference Bugs. In International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’23). ACM, 427–441.

[31] Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zel-
dovich, and M Frans Kaashoek. 2011. Software fault isolation with
API integrity and multi-principal modules. In Symposium on Operating
Systems Principles (SOSP’11). ACM, 115–128.

[32] Derrick McKee, Yianni Giannaris, Carolina Ortega Perez, Howard
Shrobe, Mathias Payer, Hamed Okhravi, and Nathan Burow. 2022.
Preventing Kernel Hacks with HAKC. In Network and Distributed
System Security Symposium (NDSS’22). Internet Society.

[33] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, et al. 2019. LXDs: To-
wards Isolation of Kernel Subsystems. In Annual Technical Conference
(ATC’19). USENIX, 269–284.

[34] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and
Anton Burtsev. 2020. Lightweight kernel isolation with virtualization
and VM functions. In International Conference on Virtual Execution
Environments. ACM, 157–171.

[35] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
2006. Intel virtualization technology: Hardware support for efficient
processor virtualization. Intel Technology Journal 10, 3 (2006).

[36] Ruslan Nikolaev and Godmar Back. 2013. VirtuOS: An operating
system with kernel virtualization. In Symposium on Operating Systems
Principles (SOSP’13). ACM, 116–132.

[37] Sujin Park, Diyu Zhou, Yuchen Qian, Irina Calciu, Taesoo Kim, and
Sanidhya Kashyap. 2022. Application-Informed Kernel Synchroniza-
tion Primitives. In Symposium on Operating Systems Design and Imple-
mentation (OSDI’22). USENIX, 667–682.

[38] Matthew J Renzelmann and Michael M Swift. 2009. Decaf: Moving
Device Drivers to a Modern Language.. In Annual Technical Conference
(ATC’09). USENIX.

[39] Christopher Small and Margo Seltzer. 1998. MiSFIT: Constructing safe
extensible systems. IEEE concurrency 6, 3 (1998), 34–41.

[40] Michael M Swift, Brian N Bershad, and Henry M Levy. 2003. Improv-
ing the reliability of commodity operating systems. In Symposium on
Operating Systems Principles (SOSP’03). ACM, 207–222.

[41] Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Gra-
ham. 1993. Efficient Software-based Fault Isolation. In Symposium on
Operating Systems Principles (SOSP’93). ACM, 203–216.

[42] Nanzi Yang, Wenbo Shen, Jinku Li, Yutian Yang, Kangjie Lu, Jietao
Xiao, Tianyu Zhou, Chenggang Qin, Wang Yu, Jianfeng Ma, et al. 2021.
Demons in the shared kernel: Abstract resource attacks against os-
level virtualization. In Conference on Computer and Communications

Security (CCS’21). ACM, 764–778.
[43] Feng Zhou, JeremyCondit, Zachary Anderson, Ilya Bagrak, Rob Ennals,

Matthew Harren, George Necula, and Eric Brewer. 2006. SafeDrive:
Safe and recoverable extensions using language-based techniques. In
Symposium on Operating Systems Design and Implementation (OSDI’06).
USENIX, 45–60.

8


	Abstract
	1 Introduction
	2 Motivation
	3 Threat Model
	4 Design & Implementation
	4.1 Memory Access Checks
	4.2 Accessing Kernel Objects
	4.3 Control Flow Integrity (CFI)

	5 Evaluation
	5.1 Understanding Overhead
	5.2 Microbenchmark
	5.3 Macrobenchmark
	5.4 Security

	6 Discussion & Future Work
	7 Related Work
	8 Conclusion
	References

