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ABSTRACT
Scientists use complex multistep workflows to analyze data. How-
ever, reproducing computational experiments is often difficult as
scientists’ software engineering practices are geared towards the
science, not the programming. In particular, reproducing a scientific
workflow frequently requires information about its execution. This
information includes the precise versions of packages and libraries
used, the particular processor used to perform floating point compu-
tation, and the language runtime used. This can be extracted from
data provenance, the formal record of what happened during an ex-
periment. However, data provenance is inherently graph-structured
and often large, which makes interpretation challenging. Rather
than exposing data provenance through its graphical representa-
tion, we propose a textual one and use a large language model to
generate it. We develop techniques for prompting large language
models to automatically generate textual summaries of provenance
data. We conduct a user study to compare the effectiveness of these
summaries to the more common node-link diagram representa-
tion. Study participants are able to extract useful information from
both the textual summaries and node-link diagrams. The textual
summaries were particularly beneficial for scientists with low com-
putational expertise. We discuss the qualitative results from our
study to motivate future designs for reproducibility tools.

CCS CONCEPTS
•Human-centered computing→User studies; Interaction paradigms;
• Computing methodologies→ Natural language generation;
• Information systems→ Data provenance.
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1 INTRODUCTION
Historically, researchers and scientists have recorded experimen-
tal procedures in lab notebooks. These notebooks should contain
enough detail to allow another researcher to reproduce an experi-
ment. However, this paper-based approach does not translate well
to today’s computational world. Computational lab notebooks (e.g.,
Jupyter [23]) seem an obvious solution. They automate experiment
recording, making them vastly superior to paper-based approaches.
However, computational lab notebooks still fall short of support-
ing automated reproducibility [42]. Even with access to all the
experiment materials such as analysis scripts and data sources, it is
non-trivial to reproduce or even understand computational exper-
iments [42, 53, 54]. This is problematic as scientists cannot build
upon prior work without a solid understanding of the computa-
tional experiment they are trying to reproduce. These challenges
contribute to what is known as the reproducibility crisis in sci-
ence [4].

Often, researchers reproduce experiments to establish a baseline
from which they can extend existing research. Researchers use
many tools that help with mechanical experiment reproducibility
such as code repositories [10], dataset repositories [29, 31] and com-
putational environment trackers [14, 43]. However, just because a
researcher can run an experiment does not mean they have enough
knowledge to build upon it. Conversely, if a researcher cannot im-
mediately reproduce an experiment result, they will need a better
understanding of the experiment to determine what is missing or
not working correctly. The information they need to develop this
understanding also might not exist in the code and data.

Data provenance addresses the issue of incomplete experiment
tracking [40]. Provenance is metadata describing the history of
data objects [9]. Although data provenance addresses the mechan-
ical problem in reproducibility by recording the missing pieces a
user needs to run an experiment, it falls short on helping the user
understand the pipeline they are reproducing. Tools that use data
provenance typically present it visually as a directed acyclic graph
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that represents the relationships between data objects. These ob-
jects are often scripts and datasets, whose attributes might contain
version information, and the relationships describe dependence or
causality. Unfortunately, since provenance graphs are large and
complicated, even experienced software engineers find interpreting
these graphs challenging [6].

Provenance systems typically store provenance data in amachine-
readable format that must be transformed for presentation to users.
In practically all prior work, the transformation produced a node-
link diagram (Fig. 1) [5, 21, 25, 30, 41, 46]. Large graphs are difficult
for humans to understand [33]. They often contain more informa-
tion than a human can store in their working memory and thus
impose too high a cognitive load.

Imagine a new graduate student who is starting to work on a
problem that a previous student had worked on. To get started,
they need to reproduce the student’s experiment, and then they
can begin to extend the work. The previous student used version
control, a data repository, and an environment manager, and still,
the new student cannot seem to get the same results. Although
their scripts run without errors, the new student is not sure if they
ran the scripts in the correct order or if the code has changed since
the previous student reported their results. Even if the student was
able to reproduce the correct result through trial and error, they are
in no position to build upon this work, because they do not have a
good understanding of the workflow.

Fortunately, the previous student collected provenance during
their last experiment execution. However, the provenance is not
immediately helpful since it is only machine-readable. They use a
graph database tool to view the provenance, but there are hundreds
of nodes! Since they cannot understand the provenance data, they
are no closer to understanding the workflow than before.

This scenario is all too common and shows that data provenance,
on its own, is not a complete solution. Although the answer to
“Which data preprocessing script did I use to create the input data
for this trained model?” is in the provenance data, interpreting
the data to find this information is nontrivial. Some researchers
evaluated different summarization and presentation techniques [6,
44], but these studies all assume that the right solution requires
exposing the graph-structured representation of the provenance
to the user. We question that assumption; our goal is to facilitate
a user’s understanding of the experiment. We hypothesize that
explaining what a provenance graph represents is a better approach
to achieving that goal.

We present a text-based provenance summarization technique
and evaluate it with a user study. Our text-based provenance sum-
marization technique is based on the observation that while ex-
periment development is an iterative and complicated process, the
ultimate experiment execution follows a relatively simple and logi-
cal procedure. As such, we prefer to directly express this sequence
rather than illustrating it with a complicated graph structure. Tra-
ditional lab notebooks describe experimental control flow using
natural language; we do the same. For our user study, we use a large
language model (LLM) to generate a natural language summary of
a provenance graph. We find that users with less computational
expertise prefer the text-based explanation as it is more familiar and

Figure 1: Simple provenance graph displayed as a node link
diagram. Process 1 executes the process_data.py script. This
script reads input.csv and writes to temp.data. Process 2 exe-
cutes the second script, analysis.py, which reads temp.data
and parameters.csv and writes to two image files, plot_1.png
and plot_2.png.

less overwhelming than the node-link diagram. Our qualitative find-
ings suggest several areas of future work to improve provenance
summarizations in the service of experimental reproducibility.

Contributions
• We develop techniques for using large language models to
produce summaries from provenance graphs.

• We demonstrate that these techniques produce high quality
summaries.

• We conduct a user study to compare text-based provenance
summaries and more typical node-link representations.

• We show that participants can extract useful information
from both the textual summaries and node-link diagrams.

Our code, datasets, and study materials are publicly available (fur-
ther details in Appendix A).

2 BACKGROUND
We develop and evaluate textual provenance summarizations in the
context of reproducibility. We use the definition of reproducibility
from the National Academies of Science, Engineering and Medicine:
“Reproducibility is obtaining consistent results using the same in-
put data, computational steps, methods, code, and conditions of
analysis” [34].

2.1 Provenance
Data provenance describes when data objects were created, when
they were modified and their history of ownership [9]. In experi-
mental workflow tracking, this translates into recording the details
about dependencies, creation, and modification of experiment code,
data, and outputs. While many tools designed for software engi-
neering capture version information, data provenance augments
such tools by capturing an execution record and the relationships
among different objects involved in a workflow. Prior work uses
provenance data in experimental tracking systems to recreate com-
putational environments [13, 41] and record interactions between
applications and file systems [18].
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Figure 2: Steps to create a text summary of a computational experiment.

Most provenance applications, including those used for exper-
iment and code management, present provenance as a node-link
diagram [5, 21, 25, 30, 41, 46]. However, provenance graphs can
contain hundreds of elements, even for small tasks such as running
a computational notebook. Research shows that graphs containing
more than 50 to 100 elements are hard to interpret [59] as they
cannot fit in a human’s working memory [33]. Alternative prove-
nance visualizations [6, 44] have failed to see meaningful adoption
(see §6 for further discussion). Given that large graphs are hard
to understand, we propose natural language text summaries as an
alternative. Our intuition is that scientific experiments follow a
logical control flow that we can describe using natural language.
We know that scientists frequently read papers, lab reports and
procedural documents, so we hypothesize that they might find a
written format easier to understand and a better way to explain how
to reproduce a computational experiment. While it was previously
impractical to generate these text summaries manually, we now
can generate them automatically using large language models.

2.2 Summarization using Generative AI
Recent work in generative artificial intelligence shows that large
language models (LLMs) are able to effectively summarize large
quantities of text [17, 62]. Users interact with LLMs using a prompt-
ing interface where they use natural language to instruct the model
to answer a question or complete a task [63]. The input to an LLM is
a natural language expression, called a prompt. The model outputs
a response to that prompt, also in natural language. If the task is
summarization, the user also provides the document as part of the
prompt.

Many priorworks uncover limitations of LLM summarization [22,
28, 47, 50]. It requires careful prompting to generate useful re-
sponses [60]. LLM responses are sometimes verbose, redundant,
and unclearly organized. Additionally, with current generative AI
models, we cannot guarantee response correctness [8]. Lastly, LLMs
can process a limited amount of text at one time. The context window
is the maximum amount of text a model can process. The context
consists of one or more prompt and model response pairs, similar
to a conversation. Since our prompt contains an instruction and
a provenance log, our instruction, provenance log and the model
response together must be smaller than the context window. The
context window is measured in tokens; for GPT models, a token is
approximately equal to 4 characters. At the time of this study, the
largest context window available for GPT-4 is 8000 tokens. This

means that the context is limited to approximately 32000 charac-
ters.

3 TEXT SUMMARIZATION
We generate several high-quality summaries using GPT-4 [37] as a
proof of concept for our user study. Fig. 2 shows the sequence of data
transformations involved in producing text summaries of compu-
tational experiments. We first run an experiment while recording
provenance 1 . We then preprocess the provenance data 2 3
and then use the GPT-4 model from OpenAI [37] to generate the
summaries for our user study 4 . The LLM-generated summaries
should contain 1) enough information that a user can understand
the experiment well enough to reproduce it and 2) no unnecessary
or false information. We outline further goals and expectations in
§3.3.
1 Provenance capture We developed a system level provenance
collection tool to capture provenance during experiments [7]. Sys-
tem level provenance describes data at the granularity of system
calls, files and processes. We wrote our own tool because most ex-
isting system provenance collection tools have a large installation
overhead [32, 39]. Our tool uses eBPF [2], a Linux framework that
allows users to monitor operating system events without modifica-
tions to the kernel. Previous work that uses eBPF for provenance
capture mainly focuses on security [27, 45], whereas our tool only
captures the information necessary for computational experiment
reproducibility.We call the provenance data captured by our system-
level tool a provenance log.

3.1 Data Preprocessing
For most LLMs, including GPT-4 [37], the context window is limited.
Since many of our provenance logs are larger than the context
window, we need a more concise representation. Additionally, the
provenance log we get from the data capture stage is a machine-
readable JSONfile. The JSONprovenance format is long and verbose,
which increases the context size. Previous work shows that LLM
response quality degrades and loses information around the middle
of a document when the context is too long [28].

We reduce log size by removing duplicate edges and converting
the JSON log to natural language. We perform both the edge re-
duction and the natural language formatting automatically using
Python scripts. Both of these methods also provide the benefit of
reducing noise in the input to the LLM. Duplicate edge reduction
helps prevent edges from being erroneously categorized as more
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1 { " type " : " E n t i t y " , " i d " : " 4 5 5 4 " , " a nno t a t i o n s " : { " inode_inum " : " 4 5 5 4 " , " u id " : " 0 " , " pa th " : " /
r o o t / u s r / b in / python3 . 1 1 " } }

2 { " type " : " A c t i v i t y " , " i d " : " 2 2 7 8 9 9 " , " a nno t a t i o n s " : { " p id " : " 2 2 7 8 9 9 " } }
3 { " type " : " Used " , " t o " : " 4 5 5 4 " , " from " : " 2 2 7 8 9 9 " , " a nno t a t i o n s " : { " o p e r a t i o n " : " e x e cu t e " , "

d a t e t ime " : " 2 023 −10 −21 2 0 : 0 1 : 5 5 : 4 2 7 " } }

(a) Example machine-readable provenance log.

1 2023 −10 −21 2 0 : 0 1 : 5 5 : 4 2 7 p r o c e s s with p id : 2 2 7 8 9 9 execu t ed f i l e : / r o o t / u s r / b in / python3 . 1 1

(b) Provenance log converted to natural language format.

Figure 3: A provenance log in machine-readable JSON format (Fig. 3a) is converted to natural language format (Fig. 3b). The
machine-readable JSON format size is 88 tokens and the natural language log size is 30 tokens.

important than they are, and the natural language format aligns
more with an LLM’s training corpus than the JSON output of our
system-level provenance collection tool.
2 Edge Reduction The operating system sometimes produces
many system events for a single user action. For example, if a user
is modifying a file using a text editor, the operating system might
execute multiple writes in a row. Our provenance collection system
will record each write event as an edge. Conceptually, there is no
difference between a single large write event and many consecutive
small write events. Therefore, we use a simplified version of edge
aggregation described by Xu et al. [57] to remove repeated edges
from the graph. This reduced log sizes by 43-53% for the logs in our
study.
3 Natural Language Formatting Through empirical experi-
ments, we found that converting the JSON logs into natural lan-
guage sentences improved both log size and summary quality. The
new log format follows a simple natural language structure where
a short sentence describes each relationship in the graph. For exam-
ple, when a process writes to a file, this is recorded in the log as a
JSON object for each of: a process node, a file node, and an edge that
connects the two nodes. We simplify this relationship as “Process p
writes to file f ”, where p and f are the identifiers for the process
and the file. Fig. 3 shows an example of the natural language log
format conversion. Since we can enumerate all the possible relation-
ship types in our provenance graph, we can generate a mapping of
sentences to relationships in the provenance graph. We can then
automatically generate a log in natural language format, filling
in the blanks with values from the provenance data. This format
produces higher quality summaries than the machine-readable log,
using the evaluation criteria in §3.3. The natural language format
reduces the study provenance log size by an additional 58-63%. In
combination these two techniques reduce the logs to between 17
and 24% of their original size. The code for generating the natural
language format is publicly available (details in Appendix A).

3.2 Prompting
After preprocessing, we use LLM prompting to generate text sum-
maries from the preprocessed provenance logs. Prompt engineering
is the process of designing LLM prompts to achieve a desired re-
sponse. Prompt engineering does not require model training or

fine-tuning. Existing work has shown that prompt engineering ef-
fectively generates well-written summaries of long-form text [17].
4 Prompt EngineeringWe use GPT-4-0613 [37], the latest openly
available model from OpenAI at the time of our study. OpenAI pro-
vides guidelines and strategies for developing prompts [1]. We fol-
lowed these guidelines and adjusted our prompts until we achieved
a desirable output. Using clear and specific instructions achieved
the best results. In Fig. 4, we show the final prompt we used to
generate the summaries for our user study. We discuss how we
evaluated output quality and how we arrived at our final prompt
in §3.3.
Temperature Parameter Additionally, we set the GPT tempera-
ture parameter to 0 to ensure consistent responses. The temperature
is a randomness control parameter for the GPT model. A lower tem-
perature means less randomness and a higher temperature means
the outputs will have more variability. Higher temperatures some-
times introduces interesting prose and more high-level descriptions,
but the responses were inconsistent and more likely to contain
false information. Setting the temperature to 0 creates almost de-
terministic responses, as the model chooses the most likely token
from the generative distribution. Unfortunately, it is not perfectly
deterministic due to two factors. First, GPU computations have
non-deterministic threading which can cause a different reduction
order, and as floating point addition is not associative this can pro-
duce slightly different results. Second, it is widely believed that
GPT-4 uses a Mixture-of-Experts (MoE) architecture [? ]. In a MoE
each expert has a maximum capacity which is shared across all
inputs in the batch. Therefore, an input can be routed to differ-
ent experts depending on the other inputs in the batch, leading to
non-determinism.
Summarizing Large Provenance Logs Even after preprocessing,
some of our provenance logs still exceeded the model context win-
dow. The GPT-4 context window is 8,000 tokens at the time of our
study. In comparison, our processed provenance logs ranged from
3945 to 12815 tokens. In cases where the log was too large, we used
prompt chaining, a technique that has been used for large, complex
tasks [52, 55]. If a log exceeded the size of the context window, we
divided it into two or more logs. We define break points as edges in
the graph that correspond to a user executing a command. These
break points represent a natural break in the log information such
as a user executing a python script from the command line. We
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Figure 4: The prompt we used to generate our user study text summaries. Input provenance log denotes the log specific to each
task.

maximize the size of the first chunk and put the remainder in the
second chunk, ensuring that the first section of the next chunk
starts at a break point. The model then summarizes the first section
of the log, and we give the response, the next section of the log, and
a second prompt back to the model, We repeat this process until
the model has summarized the entire log. This method generated
high quality summaries using the evaluation method described in
§3.3.

3.3 Summary Evaluation
There is currently no standard for evaluating LLM-generated sum-
maries. Existing methods for evaluating LLM responses use both
qualitative and quantitative methods depending on the applica-
tion [12]. Quantitative methods involve statistically measuring re-
sponses compared to reference text written by a human. Recent
research shows no strong correlation between statistical metrics
and summary quality [50]. We do not have a strict expected output
structure for the text summaries; therefore, the statistical difference
between the generated and reference summaries is not meaningful.
Therefore, we use qualitative methods to evaluate LLM-generated
summaries. We define a rubric with four categories:
Completeness Is all the necessary information included?
Conciseness Is any unnecessary information included?
Truthfulness Does it include any false information?
Readability Is it easy to read and well formatted?
For each of the four categories, we manually assign a score out

of 4, giving a total score out of 16. We developed a prompt that
produced summaries that scored 16/16 for each of the provenance
logs used in the study. We used the prompt in Fig. 4 to summarize
logs smaller than the context window. We also use this prompt as
the first prompt in the chaining approach. The prompt (excluding
the input provenance) uses only 101 tokens, leaving the rest of the
8K context window for input logs and the output summary.

It took approximately one month of iteration to create our final
solution. We had many discussions with our team members to
develop the rubric, refine the prompt and come to a consensus
on the best responses. To develop our prompt, we started with a
basic prompt, “Summarize the following log.” and provided a small

log describing a user executing a python script. We adjusted the
prompt, using different wording and adding further instructions
and context. As we increased the size of the input log, the model
required more specific prompting to steer it in the right direction.
Once we engineered a prompt that consistently produced well
written summaries, we used this prompt to generate the summaries
in our user study.

We also experimented with providing examples, another tech-
nique discussed in the OpenAI guidelines. The example technique
involves manually writing a “conversation history”. That is, one
writes a prompt and then manually generates a desired response to
that prompt. The prompt/response pair is provided to the model as
an example before giving the model a prompt for which you want
the model to produce a response. The model is likely to follow the
response format from the conversation history when using this
technique. While the responses generated from prompts that in-
cluded examples were of high quality, the examples counted against
the context window limit, leaving fewer tokens available for the
real provenance log. We did not use this example technique for
the summaries in our study. Rather, we opted to use a detailed
instruction that uses less of the context window limit as shown in
Fig. 4.

4 USER STUDY
We conduct a user study to evaluate whether users were better able
to understand workflows given text-based provenance summaries
than they were when given node-link diagrams. The study uses a
mixed methods approach. Participants are quantitatively evaluated
on their ability to answer questions about several computational
experiments using only the provenance summarization. We then
analyze qualitative feedback through long answer text responses
and audio recordings. Appendix D contains our study materials.
Our study was approved by the University of British Columbia’s
Research Ethics Board [certificate #H23-00382].
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(a) Average time to complete each task. (b) Average score for each task normalized
out of 100.

(c) Normalized NASA Task Load Index
(TLX).

Figure 5: Quantitative metrics showing performance using both graph (orange) and text (blue) provenance summaries.
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1 Lecturer ✓
2 Data Scientist ✓
3 Graduate Student ✓ ✓
4 Data Scientist ✓ ✓ ✓
5 Graduate Student ✓
6 Scientist ✓
7 Professor ✓ ✓ ✓
8 Database Admin ✓
9 Graduate Student ✓ ✓ ✓
10 Graduate Student ✓
11 Graduate Student ✓ ✓
12 Graduate Student ✓

Table 1: Participant Fields

4.1 Study Methods
The study session consisted of a brief introduction and overview of
the study purpose, demographic questionnaire, activity, and post-
activity questionnaire.
Study Activity Each participant completed four tasks. For each
task, the participant was given either a node-link diagram prove-
nance summary or an automatically generated text summary repre-
senting a computational experiment that they had not seen before.
Participants used the provenance summary to answer questions
about the computational experiment. The questions concerned in-
formation one would need to reproduce said experiment, such as,
“Which scripts write to this data file?” and “How many output files
are created during this experiment?”. We describe the study’s com-
putational experiments (workflows) in Table 2. We used the one

shot approach described in §3.2 to develop the summaries for the
first and second tasks and the chaining approach to create the third
and fourth task summaries. We manually generated the node-link
diagrams to make them as readable as possible. Details on how we
manually generated the summaries are in Appendix B. Each task’s
node-link diagrams and text summaries are available in Appen-
dix D.

Task ID Description

0 User executes a Python script and the script
creates a plot of input data.

1 User executes an R preprocessing script fol-
lowed by a Python model training script.

2
User executes a model training script three
times, each with a different learning rate passed
as a command line argument.

3

User executes a script that reads in data but does
not produce any output files. The user then ed-
its the script using the vim text editor. The user
finally executes the edited script, and this time,
the script execution produces a model check-
point file.

Table 2: Workflow description for each task in the user study.

4.2 Participants
Twelve people participated in the user study. The participants were
six graduate students, two data scientists, one research scientist,
one professor, one lecturer, and one database administrator. Their
fields spanned data science, bioinformatics, environmental science,
and forestry. Table 1 shows the complete list of fields. Using the
information provided in the demographic survey, we categorized
the participants into three expertise categories based on their data
science and programming experience.

4.3 Quantitative Results
We evaluate three performance metrics for each task: score, time to
complete, and perceived cognitive load (Fig. 5). Overall, participants
were able to answer most questions correctly regardless of which
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(a) Which provenance summarization was more useful? (b) Which provenance summarization was more enjoyable?

Figure 6: Participants rank their preference for either the text summarization or node link diagram. Participants are categorized
by their computational expertise.

representation they used. Time to complete and perceived cognitive
load varied across tasks.
Time to CompleteWe measured the time to complete each task
by recording how long the participant spent on that page in the
survey (Fig. 5a). The average time to complete each task was similar
for tasks 1-3 independent of whether the participants used the text
summary or the node-link diagram summary. In task 3, we see that
participants using the node-link diagram took slightly longer, on
average, to complete this task. We suspect this difference occurs
because task 4 contained the only long answer question that asks
“why?” rather than “what?”. This question required participants to
consider the larger picture of the whole provenance graph and its
implications.
Question Score Each participant successfully answered most ques-
tions correctly regardless of representation (Fig. 5b). For tasks 1-3,
at least 8 out of 12 participants scored 100% and 11 out of 12 scored
over 70% using either the text or node-link diagram summary. The
scores were lowest for task 4, where only one participant scored
perfectly, although 10 out of 12 participants scored over 75%. The
participants who scored the highest on this task were able to answer
the multistep reasoning more easily with the text-based provenance
summary than they were with the graph-based one. We assigned a
score for this question manually, giving two points if they answered
correctly with plausible reasoning and one point for partially cor-
rect responses (i.e. correct reasoning but incorrect answer or vice
versa). All other questions in the study had only one answer and
were marked as either correct or incorrect.
Perceived Cognitive Load We measure perceived cognitive load
using the NASA Task Load Index (TLX) standard scoring system
[19]. After each task, participants recorded their response to the
TLX questions in Appendix C. As with the other quantitative met-
rics, the cognitive load scores are similar when comparing the two
summarization methods (Fig. 5c).

The quantitative results show no obvious difference in overall
performance when using the text or the node-link summary. We

begin to see larger differences when we look at user preference and
qualitative feedback.

4.4 Qualitative Results
In the post-activity survey, we asked questions regarding the entire
study experience. At this point, the participants have completed two
tasks using a text provenance summary and two tasks with a node-
link provenance summary. We asked them to rate their preference
for either summary technique using a 5-level Likert scale [26]. The
participants recorded whether either was more useful during the
activities and whether either was more enjoyable than the other.
We show the results of these questions in Fig. 6b.

At first glance, there is no trend in either direction. Some partic-
ipants strongly prefer the node-link diagram, and others strongly
prefer the text, with a few in the middle. But, when we include par-
ticipants’ overall experience with research programming, a stronger
trend emerges. Users with little experience (blue) find the text both
more useful and enjoyable. Users with intermediate (pink) to ad-
vanced (yellow) experience varied in whether they found the text
or node-link summary more useful, but tended more towards the
graph in terms of enjoyment. We uncover some explanations for
these trends using the long answer survey responses and audio
transcriptions. We outline the prominent themes below. In the fol-
lowing sections, we refer to participants by number (e.g. P0) to
preserve anonymity.

Text summaries are accessible for all expertise levels. As observed
in Fig. 6a, users with less computational expertise preferred the text
summaries. Less experienced participants were more comfortable
and less overwhelmed with the text summaries. For instance, P6
felt the graphs required some background knowledge they did not
have.

Text summaries tell a story. P6 described the text summaries as
“Text reads more like a storyline, which is more intuitive for me” . Mul-
tiple participants found the text summaries followed a logical order.
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P12, who studies bioinformatics, remarked that they are required
to closely follow written protocols in their work. This experience
translated well to understanding the text summaries, which have
a similar format to a written experiment protocol. However, the
graph differed from any data format they were familiar with and
required more effort to understand. Advanced users, many of whom
found the graph more enjoyable, still appreciated aspects of the text
summary. P8 notes “The text format felt more useful in identifying
the workflow steps in order.”

Text summary requires attention to detail. Several participants
who preferred the node-link diagram summarization found the text
too long to read. P10 found it less enjoyable to “read through each
sentence and remember what is being done at each step” . While the
length of prose was a barrier for some participants, other partic-
ipants found it helpful. Particularly, users who are confident and
often read written protocols were comfortable extracting informa-
tion from the text summaries.

The text summaries lacked some structure compared to the
graphs. As in natural prose, the subjects and verbs do not appear
in the same place in each sentence in the text summaries. For P9,
“The text summary tended to jump around more and was difficult to
follow.” We discuss alternative text summary formats in §5.2.

Advanced Users Identify Patterns in Graph. Users with high com-
putational expertise often preferred the graph format. Many users
in this category enjoyed the extra details and workflow visualiza-
tion for identifying relationships and patterns. P8 found the graph
“made it easier to identify relationships between different components.”
Similarly, P9 found that when using the graph “it was easier to see
repeated steps and patterns.”

Users noted that the text summary was harder to skim and
quickly extract information. As such, several participants iden-
tified areas where the text could be improved, potentially affording
similar benefits to the graph. Several participants noted that key-
word highlighting in the text might allow pattern matching similar
to the graph. We discuss this further in §5.1.

Text summary can help users to get up to speed on node-link dia-
grams. Several users noted they would like to see both provenance
representations in a real application. For less experienced users,
some noted they could use the text summary to help understand the
node-link diagram. P6 would prefer to have “both text and [node-
link diagram] side by side [...] so that I could eventually learn how
to read [the node-link diagrams] with some practice.” Even users
who preferred the graph noted that “a plain or natural language
commentary is always useful [alongside the graph]” (P9).

4.5 Remote Study
We released a second version of our user study as an online survey
and allowed participants to complete the survey on their own. The
remote version of the study had minor changes from the in-person
version including small changes to question wording, two addi-
tional demographic questions and an additional long-form answer
question for task 2. 10 participants completed the remote study. We
did not see any significant trends across the quantitative metrics.
All the participants that completed the remote study were cate-
gorized as intermediate or expert in their computational and data

science expertise. Participants’ overall preference for the text sum-
marization versus the node link diagram was similar to the initial
study. The qualitative feedback matched the themes we identified
in the first study. Several participants remarked that they enjoyed
the visual cues in the node link diagram but also found the text
useful for answering questions about what happened during an
experiment.

4.6 Threats to Validity
Our study evaluation has several limitations. To limit the complex-
ity of the tasks in our study, we evaluate the provenance summaries
by asking questions about reproducing an experiment rather than
having the users actually reproduce an experiment. Additionally,
we provide the provenance summaries without any corresponding
code, data or computational environment. Future studies should
consider evaluating more realistic scenarios. For example, partici-
pants could use the provenance to reproduce past experiments or
try provenance collection tools in their own workflows.

We do not observe any strong trends in our quantitative analysis,
possibly due to our small study size and specific population. With
our sample size (24 total participants), it is challenging to draw
statistically significant conclusions. Additionally, the majority of
our participants are academic researchers, so we cannot generalize
our findings to other populations. Nonetheless, our results set the
groundwork for future studies and highlight the need for larger
studies comparing provenance representations for comprehension.

5 DISCUSSION & FUTUREWORK
Our qualitative analysis yields several areas of improvement for
text-based provenance summaries as well as reproducibility tools.
The participants’ enthusiasm while sharing feedback on repro-
ducibility tools sparks optimism for future research in provenance
and reproducibility.

5.1 Design Recommendations
In the post-activity questionnaire, we asked participants if there
are additional features they would like for a reproducibility tool
and if there is anything that would prevent them from using a
reproducibility tool. We give several recommendations based on
our takeaways from the qualitative analysis. These guidelines can
also be applied more broadly to any tools that assist with user
comprehension of experimental workflows.
Visual Features For both visualization-based and text-based sum-
marizations, several users noted they would like highlighting, zoom-
ing, panning, and search. As P7 describes, “adding colors to file
names, and scripts/outputs/paths [...] would make it more readable.”
P3 also mentions “highlighting of linked routes (when you hover over
an item it shows all the related items)” . In graph summaries, users
complained of difficulty tracing the edges between nodes. In text
summaries, several participants noted that the text required users
to read the entire entry, sometimes multiple times, to ensure they
did not miss any details. We imagine that simply color coding and
bolding keywords such as verbs (e.g., read, write, execute) and file
paths would help users to extract important details more quickly
and easily.
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Hide Low-Level Details With either provenance summarization,
users still felt overloaded with information on first impressions. P3
suggested “the ability to have hierarchical drop down tree to help
organize larger amounts of data” . Similarly, P9 wanted the tool to
“allow the user to ‘zoom in’ on different parts of the experiment” .
The option to view a high-level summary first and expand on the
details later might reduce the initial cognitive overload and make
the summaries more approachable.
Integration with Existing Tools Four participants expressed in-
terest in integration with tools they already use, such as Git [10] or
RMarkdown [3]. Several would have liked a provenance summa-
rization directly linked to their code repository. Others mentioned
it would help them to understand previous experiments if they inte-
grated a provenance summary into their computational notebook.
Installation and Use OverheadsMany participants mentioned
that they would be unlikely to use any tool if the overhead for use
was too high. This overhead includes installation and workflow
modifications. P6 noted “if set up would slow me down a lot, I might
be less likely to use it.” Specifically, barriers include having to rewrite
any of their existing code or switching programming environments.

5.2 Text Summary Limitations and
Improvements

Although we cannot guarantee perfect summaries using current
models, our positive results using a generic large language model
leave us hopeful. We expect that using a domain specific LLM,
trained on experiment provenance data, would be better still. For
our user study, we generated text summaries using the out-of-the-
box GPT-4 model from OpenAI [37] with no fine-tuning. GPT-4
is closed-source, and we assume OpenAI trained it with general-
purpose data. We expect that training or fine-tuning a model using
provenance graphs and summary data would reduce false infor-
mation and give more consistent structure. Fine-tuning involves
training a pre-trained model on a smaller task-specific dataset. We
envision using our evaluation criteria from §3.3 in this task-specific
dataset. Additionally, LLM providers such as OpenAI and Meta
are frequently releasing improved models with larger context win-
dows [51]. At the time of writing, OpenAI has already released a
new version of GPT-4 with a 128K context window [20] As such,
we are optimistic for a path forward.

With LLM limitations in mind, we also note that there are sev-
eral ways one could automatically generate similar, or even better,
summaries. The simplest method is to use rule-base methods to
populate text fields in a structured report [49]. A significant bene-
fit of rule-based text generation is that it does not require model
training. Additionally, rule-based methods address some concerns
mentioned by study participants who wanted more structure in the
text. Conversely, the rigid structure of rule-based methods could
decrease the output quality, making the summaries less compelling
to read.

Another way to extend LLM provenance summarization is to
incorporate multiple provenance formats such as language level
provenance [25, 41] and application provenance [5]. Since different
provenance tools use different abstractions, it is challenging to com-
bine the information. One could take advantage of the unstructured
input and output format and use LLMs to summarize provenance

logs from various sources. Further, a tool could potentially combine
summaries to link provenance from various tools together.

Lastly, extending the summary generation using LLMs, several
study participants expressed interest in using a tool similar to Chat-
GPT for assistance with reproducing experiments. ChatGPT is Ope-
nAI’s interactive tool for model prompting [36]. In this interactive
mode, users would be able to “chat” with the model to ask ques-
tions about the experiment and how to reproduce it. Querying the
provenance through this interface might reduce some confusion
for users were overwhelmed with too much data in the summaries.
Assuming we could fine-tune a model for provenance summariza-
tion, one could imagine such a tool for querying provenance graphs.
The benefits would be that users could express queries in natural
language and get nuanced, simple responses.

6 RELATEDWORK
Our work focuses on determining how receptive users are to a tool
conveying information from provenance. Given that we propose a
technique using LLMs to do so, we examine prior work on visualiz-
ing and summarizing provenance, as well as LLM summarization
techniques and limitations.

6.1 Provenance Graph Visualization
Provenance data are historically displayed using node-link dia-
grams [15, 21, 30]. Some applications such as Probe-It [15] include
additional views, graph-style visualizations have practically be-
come standard practice. Many tools store provenance data in graph
databases, e.g., Neo4j [35], and then use the tools that accompany
those systems or other graph-centric tools, e.g., GraphViz [16], to
explicitly represent provenance data. However, generic graph tools
often produce illustrations that are cluttered and difficult to read.
Provenance tools for experimental workflow tracking also, unsur-
prisingly, use node-link diagram illustrations. Vistrails [5] captures
provenance for workflows in their applications and displays the
provenance data using node-link diagrams. Usersmust execute their
entire workflow in the Vistrails application to capture provenance.
Language-level provenance tools common in research program-
ming, such as RDataTracker [25] and noWorkflow [41], also use
node-link diagrams. For our study, we chose to manually generate
our node-link diagrams rather that use existing tools to generate
the graphs. We made this decision because we use a different prove-
nance abstraction than the language-level tools and some applica-
tion specific provenance visualization tools such as VisTrails [5].
Additionally, the graphs we generated using GraphViz [16] and
Neo4J database viewer [35] were not well organized and did not
display all the information necessary for reproducibility comprehen-
sion. Therefore, we did not think it would be a fair comparison to
use these in the study. We manually created the graphs in our study
to highlight workflow-level detail necessary for reproducibility.

6.2 Alternative Provenance Summarization
Some prior work eschewed the node-link diagram and provided
alternative visualizations of provenance data. Schreiber and Stru-
minski use comics to describe user sensor data, such as metrics from
a smartwatch [44]. The comic provenance visualization in Fig. 7c
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(a) Macko and Seltzer use node-link diagrams to visualize
provenance data.

(b) Borkin et al. use a radial diagram to show file system
provenance.

(c) Schreiber and Struminski use comics to present smart-
watch provenance data.

Figure 7: We compare the most common node-link visualiza-
tion (Fig. 7a) with two alternative approaches (Fig. 7c, Fig. 7b).

provides an easy-to-read, high-level summary of self-tracking sen-
sor data [44]. Borkin et al. used a radial representation to represent
file system provenance data (Fig. 7b [6]). They compare this radial
representation to the node-link representation of Orbiter [30] and
find that system administrators are better able to interpret system
level behavior using the radial diagrams. Similar to what we ob-
served with text-based summaries, these tools lowered the cognitive
load for some users while performing tasks. VinciDecoder [48] uses
machine learning to summarize provenance graphs into forensic
reports. These forensic reports are also similar to our work, as the
reports are text-based and use machine learning techniques to pro-
duce them. However, since our summarizations are LLM-generated,

our reports have less regular structure than VinciDecoder’s. One
could envision adopting similar generation techniques to create
more structured experimental workflow provenance summariza-
tions. While these visualization techniques perform well in some
domains, none are designed or evaluated specifically for computa-
tional experiment comprehension.

6.3 LLM Summarization
Summarization is a popular application of large language mod-
els. Zhang et al. and Goyal et al. use LLMs to summarize new
articles [17, 62]. The authors find that users prefer LLM-generated
summaries to other summarization models [17] and like themmuch
as human-written summaries [62]. Similarly, Laskar et al. evalu-
ated how well various LLMs summarize meeting notes [24] and
ultimately deployed such summaries in a real-world setting. Other
work introduces new techniques for prompting LLMs to summarize
even longer text. Wu et al. propose their “Extract-then-Evaluate”
method [56], while Chang et al. and Zhang et al. demonstrate tech-
niques based on iterative and incremental updates [11, 61].

Despite the successes found in LLM summarization, they are not
without their drawbacks. Yang et al. demonstrated that the predic-
tions ChatGPT provides in a mental health care setting are unstable
and can change based on tweaking the severity of adjectives used
in the prompt [58]. They also found that while LLMs are capable of
providing explanations for their answer, those explanations are not
always correct and do not mean that the models are interpretable.
Meanwhile, Shen et al. tested LLMs for automatic evaluation of
summaries, and found them inconsistent and not yet at the level
of human evaluators [47]. Liu et al. observe that LLMs frequently
overlook information in the middle of a document [28]. Tang et al.
evaluates medical journal summaries produced by GPT 3.5 [38] and
ChatGPT [36] and demonstrate that the GPT-generated summaries
are often untruthful or used indecisive language that could lead
to misinformation. Unlike provenance logs, these summarizations’
inputs (news articles, paper abstracts) are pure natural language
sentences and paragraphs, which is what led us to create the natural
language format from our provenance logs (§3). To our knowledge,
there is no published work on using LLMs for summarizing prove-
nance logs or log-structured data.

7 CONCLUSION
Our study demonstrates the viability of automatically generating
text-based provenance summaries for enhancing user understand-
ing of data science workflows. We evaluate the text summarization
approach with a user study, comparing text summaries to node-
link diagrams for presenting provenance data to users. We found
that users with less programming expertise often prefer the text
summaries as they adopt a familiar format that is more approach-
able. In contrast, users with advanced programming experience
enjoyed the extra details and visual cues provided in the graphs. We
provide direction to improve both the text and node-link diagram
summarizations in our qualitative analysis of our survey results.
Not only do our results demonstrate the effectiveness of the textual
summaries, but the results also provide insight into how to present
provenance data to enhance user comprehension.
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A AVAILABILITY
The work presented in this paper is open-source. Detailed installa-
tion instructions are available online.

• System Provenance Collection Tool. Available for download
under GPL-2.0 license at https://github.com/ubc-systopia/
thoth.

• Provenance Summarization. Available for download under
Apache 2.0 license at https://doi.org/10.5281/zenodo.10672536.

• The user study documents are available at https://doi.org/10.
5281/zenodo.106725369.

B DIAGRAM CREATION
It is common for graph users to visualize their data as node-link
graphs with tools like Neo4j [35] and GraphViz [16]. However, these
general-purpose tools are not a sufficient fit for this study. They
do not readily show in a static way all the necessary attributes for
nodes and edges a participant needs to see to answer the questions
from our tasks. Additionally, since we created automatically gener-
ated text summaries tailored towards reproducibility and workflow
executions, it would not be a fair comparison to use a general-
purpose visualization. Therefore, we chose to make our own dia-
grams.

We devised a new type of node-link diagram tailored towards
displaying information from provenance logs about a workflow.
We manually created our node-link diagram visualizations using
a set of pre-defined rules rather than write a program to do so
automatically. Making them manually allowed us a finer grain of
control over the various aspects of the diagram to ensure legibility;
however, we believe the process could be automated with some
effort.

Our node-link diagrams highlight the processes that comprise
the computational workflow. Overall, our diagrams display events
in order they executed from top to bottom; however, the operations
are not displayed proportional to the time they occurred, only the
order. We represent each process with a large arrow that points
downward to indicate the order of execution. Each process’ arrow
receives a unique color, except for instances where that process has
spawned additional processes. The child processes are large arrows
of the same color placed directly to the right of the original process.

The top of the arrow has a block containing the command that
initiated the process. Smaller arrows attached to the right side of a
process show the various system operations the process performed
over the course of its existence. These arrows represent edges to
other nodes, such as files it reads or writes, libraries it loads, or
programs it executes.

Nodes representing the same file are not duplicated, so it is clear
in the graph when a process reads a file that another process created.
In this situation when multiple processes have edges to a node, the
order the arrows point to the node are in execution order. The arrow
attached at the top executed first, moving downwards to the last
arrow at the bottom which is the operation executed last.
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C TASK LOAD INDEX QUESTIONS
(1) Howmentally demanding was this task? (1-Very Low, 5-Very

High)
(2) How hurried or rushed were you during this task? (1-Very

Low, 5-Very High)
(3) How successful would you rate yourself in accomplishing

this task? (1-Perfect, 5-Failure)
(4) How hard did you have to work to accomplish your level of

performance? (1-Very Low, 5-Very High)
(5) How insecure, discouraged, irritated, stressed, and annoyed

were you? (1-Very Low, 5-Very High)
(6) How useful was the provenance summary in answering the

questions? (1-Very Useful, 5-Not Useful)

D STUDY ACTIVITIES
D.1 Questions
D.1.1 Task 1.

(1) What is the name of the dataset the student is using?
(2) Which directory is the dataset saved in?
(3) What is the name of the file containing the experiment code?
(4) Which directory is the experiment code located in?
(5) How many output files are produced? (Include intermediate

outputs)
(6) Which programming languages are used to conduct the anal-

ysis in this experiment?

D.1.2 Task 2.

(1) How many times is the script train_model.py executed?
(2) How many times is the script preprocess.R executed?
(3) Which scripts write to the file data.csv?
(4) Which scripts read from the file data.csv?
(5) Which scripts write to the file temp_data.csv?
(6) Which scripts read from the file "temp_data.csv"?
(7) Which of the following are dependencies of train_model.py?

D.1.3 Task 3.

(1) Where is the dataset located?
(2) How many output files were created during this experiment

(including intermediate files)?
(3) Please explain the difference between the first and second

executions of the train_model.py script in no more than two
sentences.

D.1.4 Task 4.

(1) What is the name of the dataset the student is using?
(2) Which directory is the dataset saved in?
(3) What is the name of the file containing the experiment code?
(4) Which directory is the experiment code located in?
(5) How many output files are produced? (Include intermediate

outputs)
(6) Which programming languages are used to conduct the anal-

ysis in this experiment?

D.2 Text Summaries
Fig. 8, Fig. 9, Fig. 10, Fig. 11 show the text summaries used in our
study. We used the single prompt method for task 1 and 2 and the
chaining method for task 2 and 3.

D.3 Node Link Diagrams
Fig. 12, Fig. 13, Fig. 14, Fig. 15 show the node link diagrams we
created and used in our study.
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Figure 8: Workflow 1 Text Summary

Figure 9: Workflow 2 Text Summary

Figure 10: Workflow 3 Text Summary
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Figure 11: Workflow 4 Text Summary
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Figure 12: Workflow 1 Node Link Diagram
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Figure 13: Workflow 2 Node Link Diagram
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Figure 14: Workflow 3 Node Link Diagram
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Figure 15: Workflow 4 Node Link Diagram
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