
KAIROS: Practical Intrusion Detection and Investigation
using Whole-system Provenance

Zijun Cheng∗†, Qiujian Lv∗, Jinyuan Liang‡, Yan Wang∗, Degang Sun∗, Thomas Pasquier‡ and Xueyuan Han§
∗Institute of Information Engineering, Chinese Academy of Sciences, China

†School of Cyber Security, University of Chinese Academy of Sciences, China
‡University of British Columbia, British Columbia, Canada

§Wake Forest University, North Carolina, United States

Abstract—Provenance graphs are structured audit logs
that describe the history of a system’s execution. Recent
studies have explored a variety of techniques to analyze
provenance graphs for automated host intrusion detection,
focusing particularly on advanced persistent threats. Sifting
through their design documents, we identify four common
dimensions that drive the development of provenance-based
intrusion detection systems (PIDSes): scope (can PIDSes
detect modern attacks that infiltrate across application
boundaries?), attack agnosticity (can PIDSes detect novel at-
tacks without a priori knowledge of attack characteristics?),
timeliness (can PIDSes efficiently monitor host systems as
they run?), and attack reconstruction (can PIDSes distill
attack activity from large provenance graphs so that
sysadmins can easily understand and quickly respond to
system intrusion?). We present KAIROS, the first PIDS that
simultaneously satisfies the desiderata in all four dimen-
sions, whereas existing approaches sacrifice at least one
and struggle to achieve comparable detection performance.

KAIROS leverages a novel graph neural network based
encoder-decoder architecture that learns the temporal
evolution of a provenance graph’s structural changes to
quantify the degree of anomalousness for each system
event. Then, based on this fine-grained information,
KAIROS reconstructs attack footprints, generating
compact summary graphs that accurately describe
malicious activity over a stream of system audit logs. Using
state-of-the-art benchmark datasets, we demonstrate that
KAIROS outperforms previous approaches.

Note: This is a preprint version of the paper accepted
at the 45th IEEE Symposium on Security and Privacy
(S&P’24) [1].

1. Introduction

Recent work on intrusion detection [2–8] uses
kernel-level causal dependency graphs, or provenance

graphs, to combat today’s increasingly sophisticated
system intrusions, such as advanced persistent threats
(APTs) [9]. These graphs, constructed from system-level
logs, describe interactions (represented by edges)
between kernel objects (represented by nodes), such
as processes, files, and sockets, to structurally represent
the history of a system’s execution.

Various aspects govern the design of prior provenance-
based intrusion detection systems (PIDSes). In particular,
we identify four key dimensions of PIDSes emerging
from a large body of work in this line of research:
Scope: System provenance tracks an entire system’s
activity, as well as cross-host interactions through
sockets [10]. Leveraging provenance’s system-wide
visibility, PIDSes that scale to a network of systems are
better equipped to detect intrusions that span multiple
applications and hosts [3].
Attack Agnosticity: As zero-day exploits (i.e., mal-
ware or vulnerabilities that are not known by security
analysts) become increasingly common [11], PIDSes
can better generalize to detect new attacks if they do
not rely on any attack signatures or signals known a
priori. Security practitioners have repeatedly discovered
new attacks that easily bypass signal-based detectors
deployed in the wild [12, 13]. In contrast, anomaly-based
PIDSes [2, 6, 14] extract distinguishing features from
graphs of known benign system execution and use these
features to determine whether a system is under attack.
These PIDSes not only outperform non-provenance-
based approaches (e.g., log analysis [15, 16]), but more
importantly, demonstrate great detection performance
in the face of unknown attacks. This is because system
provenance provides rich contextual information (both
spatial and temporal) through its dynamic graph topology.
Such contexts separate a benign system event from a

malicious event, even if they look almost identical in iso-
lation [2]. For example, repeated connections to a system
(represented spatially in a provenance graph as a large
number of edges connected to socket nodes) in a short pe-
riod of time (rapid temporal changes in the graph) could
suggest a DoS attack, which might differ significantly
from a graph describing legitimate socket connections.
Timeliness: A provenance graph evolves to record system
activity as the system runs. PIDSes that analyze the graph
in a streaming fashion [2] as it evolves provide more
timely protection than offline systems [17] that introduce
delays between provenance capture and threat detection.
Attack Reconstruction: System provenance is
instrumental in understanding intrusions [18, 19]. We
can reason about chains of events that could have led
to an intrusion and the potential damage inflicted on the
system by the intrusion by navigating back and forth
along the edges in the graph. However, it is impractical
to manually investigate the entire graph, given the large
size of a typical provenance graph and the fast growth
rate of the graph over time [10]. Instead, more practical
PIDSes provide minimum graph data that reconstructs
attack scenarios through the dependencies between
kernel objects. Such PIDSes can greatly reduce the
manual effort, enabling sysadmins to quickly understand
an intrusion and devise a timely response. For example,
Holmes [3] correlates edges that match the behavior of
known attacks to identify APTs and uses the subgraphs
of the correlated edges to facilitate attack comprehension.

Unfortunately, no existing PIDSes achieve the desider-
ata simultaneously in all four dimensions. Solutions meet-
ing the first three properties [2, 7, 8, 20, 21] provide little
information to help sysadmins understand their decisions
and reconstruct the attack, while systems satisfying the
last either consider single applications [5, 14], detect only
known attacks [3, 17, 22], or require offline analysis [17].

We introduce KAIROS, the first PIDS that ful-
fills all four desiderata while achieving high detection
performance. It leverages fine-grained, temporal-spatial
graph learning that scales to provenance graphs of a
network of systems to monitor run-time system behavior.
Specifically, KAIROS quantifies the degree of anomalous-
ness for individual edges (i.e., system events) as they ap-
pear in the streaming graph, based on how much the his-
torical behavioral patterns of their corresponding nodes
(i.e., system entities) deviate from the patterns learned
from known benign executions in the past. KAIROS’
graph analysis is highly contextualized, taking into
account dynamic changes (i.e., temporality) of the edges
surrounding a node and the node’s neighborhood structure
(i.e., spatiality). Edge-level anomalousness provides the

basis for a graph-level causality analysis that KAIROS
performs periodically at run time. This analysis correlates
only highly anomalous edges based on information flow
and constructs compact but meaningful summary graphs
from original provenance graphs to fully and concisely
describe attack scenarios (like the one shown in Fig. 1),
without any a priori knowledge of attack characteristics.

We evaluate KAIROS on recent, publicly available
benchmark datasets from DARPA that simulate APT
campaigns, as well as datasets that allow us to fairly com-
pare KAIROS with state-of-the-art open-source PIDSes,
Unicorn [2] and ThreaTrace [8]. Our results show that
KAIROS achieves high detection accuracy, outperforming
both systems while incurring low computational and
memory overhead. More importantly, KAIROS accurately
reconstructs attack footprints, significantly reducing
the number of graph edges that sysadmins must inspect
to understand an attack. KAIROS is available online at
https://github.com/ProvenanceAnalytics/kairos.

2. Background & Motivation

We introduce the concept of system-level data
provenance in §2.1. In §2.2, we use a real attack
scenario from DARPA to motivate our design.

2.1. System-level Data Provenance

System-level data provenance records data flows
between kernel-level objects, e.g., processes, files,
and sockets. Data provenance can be represented as a
directed graph, called a provenance graph, where nodes
represent kernel-level objects and edges represent various
types of interactions (i.e., dependency relationships)
between these objects. These interactions are typically
the results of system calls. Fig. 1 shows an example
of a provenance graph.

We can capture system-level data provenance using
kernel event logging mechanisms, such as Windows
ETW and Linux Audit, that are natively supported by
different operating systems. Alternatively, specialized
in-kernel reference monitors, such as Hi-Fi [23] and
CamFlow [10], track fine-grained data flows between
low-level kernel abstractions (e.g., inodes and processes)
to capture data provenance.

KAIROS is agnostic to the underlying provenance cap-
ture mechanism, analyzing all kernel interactions of an
entire network of systems. This whole-system (rather than
application-specific) visibility is particularly crucial in
detecting modern sophisticated intrusions such as APTs,
because APTs often infect multiple applications on a
single host and migrate from one infected host to another.

https://github.com/ProvenanceAnalytics/kairos

Figure 1. A provenance summary graph from DARPA E3-THEIA that describes attack activity in the motivating example (§2.2), as
automatically generated by KAIROS. Rectangles, ovals, and diamonds represent processes, files, and sockets, respectively. R=Read, W=Write,
O=Open, S=Send, Rc=Receive, C=Clone, and E=Execute. We add colors and dashed elements for clarity to highlight the output that KAIROS
generates. Solid nodes and edges are extracted by KAIROS from the original provenance graph to reconstruct the attack. Dashed pink
nodes and edges are attack-related activities missed by KAIROS, according to the attack ground truth. Blue nodes and edges are activities
not explicitly mentioned in the ground truth but included by KAIROS.

2.2. A Motivating Example

We use a large-scale APT campaign simulated by
DARPA [24] to illustrate the challenges faced by
existing PIDSes along the four desiderata (§1). For
comparison, we briefly describe KAIROS’ output in
this scenario at the end. In §4, we provide an in-depth
discussion of KAIROS’ design, and in §5, we give
details of this experiment (among others).

2.2.1. Scenario (Fig. 1). The attacker leverages a
Firefox vulnerability to establish a foothold on a
victim machine, which enables the attacker to write a
malicious payload called clean to /home/admin/
on disk. The attacker then executes the payload with
escalated privileges. This new attack process (with root
privileges) communicates with the attacker’s command-
and-control (C&C) server at 161.116.88.72 to
download and execute another malicious payload called
profile, again with root privileges. profile, in turn,
fetches a third payload called xdev from the C&C server
and stores the payload in /var/log/. profile and
xdev lurk in the victim host to prepare for subsequent
attacks. A few days later, the attacker uses profile to
inject malicious code in the mail process and executes
mail with root privileges. mail then performs port
scans of all known hosts on the victim’s network.

2.2.2. Challenges. APTs stealthily infiltrate their
targeted systems and maintain their presence in victim
hosts for extended periods of time, exhibiting a unique
low-and-slow attack pattern. During the lifecycle of
an APT, it is common for attackers to leverage various
zero-day exploits, some of which might even be tailored
to the targeted victim systems [25]. Because of these

characteristics, existing PIDSes are forced to make the
following trade-offs:

Attack Agnosticity: APTs’ low-and-slow attack pattern
makes anomaly-based detection difficult, because attack
activity can hide among a large amount of benign activity
and appear similar to normal behavior if execution
context is not sufficiently considered [2]. For instance, in
our scenario, among 32.4 million log entries, we identify
approximately only 3,119 entries related to the attack,
which make up merely 0.01% of the entire log. To
circumvent this challenge, PIDSes such as Holmes [3]
and RapSheet [22] use existing threat intelligence
knowledge to manually craft graph-matching rules that
indicate the presence of an APT. However, as new
exploits continue to surface, they must constantly update
their knowledge base to include additional rules. By
construction, they will always lag behind sophisticated
adversaries launching previously unknown attacks.

Attack Reconstruction: PIDSes such as Unicorn [2]
and ThreaTrace [8] take an anomaly-based approach to
detecting system activity that deviates significantly from
known benign behavior. While they require no a priori
knowledge of APT characteristics (unlike Holmes), their
detection provides little information to help sysadmins un-
derstand the attack. Consequently, forensic investigation
that follows typically involves prolonged manual inspec-
tion of large provenance graphs. For example, Unicorn
reduces a provenance graph to a compact feature vector
to model system behavior, but an anomalous feature
vector corresponds to an entire provenance graph. In our
example, sysadmins must sift through millions of edges to
identify the attack activity. ThreaTrace, on the other hand,
pinpoints only anomalous nodes (e.g., the Firefox
and clean process nodes in Fig. 1) that might be

involved in the attack. While these nodes can be useful
starting points, sysadmins still need to manually trace
through thousands of edges to understand the complete
attack story. ThreaTrace recognizes this limitation and
acknowledges the gap between anomaly-based detection
and attack construction. KAIROS fills this gap.
Scope: PIDSes such as Winnower [5] construct benign
graph templates to highlight anomalous subgraphs that
do not fit into the templates. While this facilitates forensic
analysis, Winnower is unsuitable for APT detection,
because it cannot scale to large graphs. Rather, Winnower
focuses on an application-wide scope and analyzes
much smaller provenance graphs than the ones that can
realistically describe whole-system activity under APTs.
As such, we must run at a minimum multiple instances
of Winnower targeting various applications (e.g.,
Firefox and mail) to potentially detect the APT in
our scenario. In practice, a workstation could run many
dozens of applications, all of which must be individually
monitored by Winnower, since we do not know a
priori what application(s) would be involved in an APT.
However, even then, it is unclear whether Winnower’s
isolated, application-centered approach would be
effective. This is because inter-process information
flows are critical to detecting APTs [2], but Winnower
is oblivious to them. Like Winnower, SIGL [14] limits
its detection to anomalies during software installations;
therefore, it also cannot analyze a provenance graph
of millions of edges in our scenario. Moreover, like
ThreaTrace, SIGL pinpoints only anomalous nodes, thus
incapable of reconstructing attack activity.
Timeliness: Timely APT detection and forensic analysis
is important to quickly identify the attack and take
remedial actions. PIDSes such as Poirot [17] match
complex graph signatures, each describing the behavior
of a specific malware program. This expedites threat un-
derstanding after a threat is matched. However, even if we
dismiss the issue of attack agnosticity, Poirot’s matching
process is slow and thus unsuitable for run-time detection,
for two reasons. First, Poirot takes minutes to search
for each signature in a provenance graph. Therefore,
the approach cannot scale as the number of signatures
grows. Second, matching only succeeds if a malware
program exhibits its complete behavior as described in the
signature. As such, Poirot must repeatedly try to match
the same graph signatures as the graph evolves over
time, which exacerbates the scaling issue even further.

2.2.3. KAIROS’ Result. KAIROS accurately identifies
the attack and reconstructs the APT scenario at run
time without relying on any a priori attack knowledge,

even though the malicious activity blends in with the
benign activity in the background. Note that the size of
the logs capturing the benign activity is several orders
of magnitude larger. Fig. 1 shows the attack summary
graph automatically generated by KAIROS from the
original provenance graph that describes whole-system
host behavior (of all participating hosts).

The provenance data in this scenario is captured by
THEIA [26], which performs system-wide audit to
track fine-grained information flow between kernel-level
entities. KAIROS analyzes THEIA’s audit data to monitor
all applications running on victim hosts (scope). KAIROS’
model is trained only on benign system behavior that is
observed before the APT campaign is launched (attack
agnosticity). As the attack slowly unfolds, KAIROS
gradually constructs the graph we see in Fig. 1, as highly-
anomalous edges that are deemed relevant to the attack
appear in the provenance graph (timeliness). This com-
pact graph succinctly describes the attack, summarizing
the malicious activity extracted from the anomalous edges
for clarity. The original graph contains 32.4 million edges
and 690K nodes; in contrast, KAIROS’ summary graph
contains only 29 edges and 20 nodes. More importantly,
KAIROS’ output almost perfectly aligns with the ground
truth of our experiment, which is provided by DARPA
alongside the dataset [24]. This helps sysadmins quickly
understand the APT attack (attack reconstruction).

3. Threat Model

Similar to prior PIDSes [2, 3, 17, 27], our work con-
siders attackers attempting to take control of a system and
maintain a persistent presence by e.g., exploiting software
vulnerabilities and deploying communication backdoors.
However, we do not consider hardware-level, side-
channel, or covert-channel attacks, since their behavior
is typically not explicitly captured by kernel-level audit
systems. KAIROS is an anomaly-based detection system;
therefore, we further assume that host systems are not
under the influence of an attacker when KAIROS learns
from provenance graphs of benign system execution and
that KAIROS thoroughly observes system activity during
this initial learning period. If system behavior changes
in the future (or if KAIROS did not fully observe all
benign behavior), concept drift might occur [28]. While
we exclude concept drift from our threat model, as is
standard in anomaly-based detectors [8, 14], we show
empirically how KAIROS can mitigate this issue in §5.2.

Our trusted computing base (TCB) includes the under-
lying OS, the audit framework, and KAIROS’ analysis
code, which is also standard among existing PIDSes. As

such, we do not consider kernel-level attacks and assume
the use of existing system hardening techniques to miti-
gate any potential audit framework compromise [10, 29].

Finally, we assume the integrity of the output data (i.e.,
provenance graphs) from the audit framework. Existing
secure provenance systems [10, 29] and tamper-evident
logging techniques [30, 31] can ensure log integrity and
detect any malicious interference with provenance logs.

4. KAIROS Framework

KAIROS is an anomaly-based intrusion detection and
attack investigation system. It leverages state-of-the-art
deep graph learning and community discovery through
causal dependencies in a provenance graph to (1) detect
anomalous system behavior without prior knowledge
of any specific attack characteristics, and (2) correlate
detected anomalies based on information flows between
kernel objects. KAIROS provides concise and meaningful
summary graphs for labor-saving human-in-the-loop
forensic analysis. Fig. 2 depicts KAIROS’ architecture
consisting of four major components:
1⃝ Graph Construction and Representation (§4.1).

KAIROS analyzes a graph in a streaming fashion, chrono-
logically ingesting edges as they appear in the graph.
2⃝ Graph Learning (§4.2). When a new edge (e.g.,

the bold edge 2⃝ → 7 in Fig. 2) appears in the
graph, KAIROS uses an encoder-decoder architecture
to reconstruct the edge. The encoder takes as input the
neighborhood structure around the edge and the states
of the nodes in the neighborhood. A node’s state is a
feature vector associated with each node that describes
the history of the changes in the node’s neighborhood.
The decoder then reconstructs the edge from the edge
embedding output by the encoder. The difference between
the original edge and the reconstructed edge is called
the reconstruction error. In the training phase, KAIROS
simultaneously trains the encoder and the decoder to
minimize reconstruction errors of benign edges. During
deployment, reconstruction errors of individual edges are
used as the basis for anomaly detection and investigation.
Additionally, KAIROS updates the states of the source
and destination nodes (node 2⃝ and 7) of the new edge.
3⃝ Anomaly Detection (§4.3). KAIROS constructs time

window queues to detect anomalies during deployment.
To do so, KAIROS identifies a set of suspicious nodes
in each time window based on the edges’ reconstruction
errors. Two time windows with overlapping suspicious
nodes are enqueued together. When a new time window
is added to a queue, KAIROS updates the anomaly score
of the queue, based also on reconstruction errors. If the

Table 1. SYSTEM
ENTITIES, THEIR ATTRIBUTES, AND DEPENDENCY RELATIONSHIPS.

Subject Object Relationships Entity Attributes
Process Start, Close, Clone Image pathname

File Read, Write, Open, Exec File pathnameProcess
Socket Send, Receive Src/Dst IP/port

score exceeds a threshold, KAIROS considers the queue
to be anomalous and triggers an alert. Thus, KAIROS
performs anomaly detection periodically at intervals of
a time window. In Fig. 2, KAIROS detects an anomalous
queue consisting of time windows 1, 2, and 4.
4⃝ Anomaly Investigation (§4.4). To help sysadmins

reason about the alarm, KAIROS automatically generates
compact attack summary graphs from anomalous time
window queues. This involves identifying communities of
edges with high reconstruction errors to improve legibil-
ity. Graph reduction is necessary, because unlike images
and texts, graphs are hard to visualize and interpret even
by human experts [32]. In Fig. 2, sysadmins need only
to understand a small, summarized graph from KAIROS,
instead of tracing through a much larger one in the
anomalous time window queue that triggered the alarm.

4.1. Graph Construction and Representation

KAIROS constructs a whole-system provenance graph
from audit data collected by logging infrastructures, such
as Windows ETW, Linux Audit, and CamFlow (§2.1).
KAIROS considers three types of kernel objects and
nine types of interactions (i.e., system events). KAIROS
transforms each event into a directed, time-stamped
edge, in which the source node represents the subject
of the event and the destination node the object being
acted upon. Table 1 shows the types of relationships
(i.e., interactions) between kernel subjects and objects
and the node attributes we consider.

KAIROS encodes a node’s feature using a hierarchical
feature hashing technique [33] based on node attributes.
Hierarchical feature hashing projects high-dimensional
input vectors into a lower-dimensional feature space
while preserving the hierarchical similarity between
the original input. As a result, two files located in the
same parent directory (e.g., /var/log/wdev and
/var/log/xdev), for example, are mapped closer
in the feature space than a file in a different directory
(e.g., /home/admin/profile).

To perform hierarchical feature hashing, KAIROS
encodes a node’s attribute multiple times, each at
a different level of hierarchy. For example, for a
file node with a pathname /home/admin/clean,
KAIROS creates three substrings of the pathname

Figure 2. Overview of KAIROS’ architecture.

attribute: /home, /home/admin, and /home/ad-
min/clean; for a socket node with an IP address
161.116.88.72, it creates four substrings: 161,
161.116, 161.116.88, and 161.116.88.72.
KAIROS then projects each substring s into the feature
space. The i-th dimension of s’ feature vector is
computed by ϕi(s) =

∑
j:h(sj)=iH(sj) where sj is a

character in the substring, h is a hash function that
maps each character to one of the dimensions in the
feature space, and H is another hash function that
hashes a character to {±1}. Therefore, we add H(sj)
to dimension i in s’ feature vector if h(sj) is i. ϕ(s)
is the feature vector of the substring s. The attribute a’s
feature vector is the sum of the feature vectors of all
its substrings, Φ(a)=

∑
jϕ(sj) where ϕ(sj) represents

each substring’s encoded vector, and Φ(a) represents
the final encoding of a node’s attribute.

Hierarchical feature hashing assumes that two kernel
entities of similar semantics have similar hierarchical
features. While this is often the case, it is possible that
an adversary attempts to manipulate an entity’s attribute
to evade detection. However, KAIROS’ graph learning
(§4.2) will update these initial feature vectors based on
temporal and structural equivalence, which is hard to
manipulate, to overcome such issues. KAIROS can also
leverage other node embedding techniques [14], but all
approaches make some assumptions about the similarity
between two system entities.

4.2. Graph Learning

Node featurization in §4.1 captures only attributes of
system entities, without considering any structural (i.e.,
interactions between an entity and other entities) or
temporal (i.e., sequences of events involving an entity)
relationships between individual entities and the rest
of the provenance graph. This is unfortunate, because
the evolving provenance graph itself, which describes
the dynamic behavior of a system, clearly manifests
such relationships. More importantly, these relationships
provide rich contextual information that enables us to
model distinctive baseline (benign) system behavior and
distinguish anomalies from the baseline.

For example, process injection leads to arbitrary
code execution in the address space of a legitimate
process. While malicious execution is masked under
the legitimate process (i.e., the attribute of the process
remains the same), under the influence of the adversary,
the compromised process would exhibit interactions that
deviate from its normal activity (e.g., accessing privileged
system resources that the process typically does not
require). These interactions are reflected as anomalous
structural relationships in a provenance graph.

Temporal information can further reveal subtle
behavioral differences; these differences are hard, if
not impossible, to identify if one looks at only static
snapshots of a dynamic provenance graph. For example,
a DDoS attack that quickly overwhelms a victim system
with a large number of network connections may
result in the same graph structure as an unattacked

system handling the same number of connections over
a reasonable period of time. Without taking temporal
relationships into account, it is difficult to detect the
attack by comparing only graph structures.

KAIROS learns both temporal and structural
relationships in a provenance graph. KAIROS’ graph
learning follows an encoder-decoder architecture [34].
When a new edge et appears in the streaming graph Gt at
time t, the encoder embeds et into a latent representation
based on the state of its neighborhood immediately
before t (which we denote as t−). That is, the edge
embedding summarizes graph features in Gt− =Gt−et.
The decoder then takes as input the edge embedding
from the encoder and predicts the type of the edge as a
probability distribution, i.e., the probability of the edge
et belonging to each of the nine possible types (§4.1).

KAIROS simultaneously trains the encoder and the de-
coder using only benign provenance graphs. The goal of
training is to minimize the difference between the actual
edge type (when a new edge appears in the graph) and the
type predicted by the decoder from its embedding. We
call this difference the reconstruction error. At test time,
the decoder assigns a small reconstruction error to an
edge if its embedding encodes graph structures that resem-
ble the structural context observed from benign system
activity in a similar temporal context. Otherwise, a large
reconstruction error is assigned, the magnitude of which
depends on the extent of the deviation in both contexts.
Encoder. KAIROS’ encoder uses a temporal graph
network (TGN) [35] architecture to encode provenance
graph features into edge embeddings. At time t, KAIROS
generates an edge embedding z for the new edge et
using a graph neural network (GNN) based model
called UniMP [36]:

z=GNN(st− ,e,t)

st− denotes the state of the graph structure surrounding
et at t−. In KAIROS, a graph structure’s state is
represented by the states of all the nodes in the structure.
Each node state is a feature vector that describes the
history of graph changes involving the node. When a
new node appears in the graph, its state is initialized to a
feature vector with all zeros, because there is no historical
information on the node. As new edges change the node’s
neighborhood N , KAIROS updates the node state (which
we discuss later). st− thus describes the states of et’s
source and destination nodes vsrc and vdst, as well as the
states of sampled nodes in Nvsrc and Nvdst . e represents
the edges in Nvsrc and Nvdst from sampled nodes. Each
edge is encoded as a concatenation of the source and
destination node’s feature embedding (§4.1) and the one-
hot encoding of the edge type. t is a vector of timestamps

corresponding to the edges in e. (e,t) provides the
structural context of et, similar to the only information
that prior PIDSes [2, 37] use to learn provenance graphs.
State Update. KAIROS needs to update the states of vsrc
and vdst, since their neighborhoods have changed. To
do so, KAIROS trains a gated recurrent unit (GRU)
model [38]:

st(vsrc)=GRU(st−(vsrc),et)

st(vdst)=GRU(st−(vdst),et)

Note that the new edge et’s information is propagated
to vsrc’s and vdst’s updated states st(vsrc) and st(vdst),
so that future edge embeddings (of new edges appearing
after t) can incorporate et if et is in their neighborhoods.
However, et’s information is not propagated to the
current edge embedding z at t, because et should not
be leaked to the decoder from z when the decoder is
used to predict et. We refer interested readers to Rossi
et al. [35] for technical details on TGNs.
Decoder. KAIROS’ decoder uses a multilayer perceptron
(MLP) to predict the type of the edge connecting vsrc and
vdst. In other words, the decoder learns to reconstruct
et from the encoder’s output z, which provides both
structural and temporal contexts for the decoder to
reconstruct edges. The dimension of the MLP’s last (i.e.,
output) layer is nine, which is the number of all possible
edge types (§4.1). The decoder outputs a vector P(et)
of the probabilities of et being each of the nine types:

P(et)=MLP(z)

During training, KAIROS minimizes the reconstruction
error (RE) between P(et) and the observed edge type
L(et) from benign provenance graphs:

RE=CrossEntropy(P(et),L(et))

L(et) is an one-hot vector where the probability of
et’s actual edge type is 1 and the rest 0. At test time,
KAIROS assigns low REs to edges whose structural
and temporal contexts are similar to those learned from
benign graphs but high REs if they deviate significantly
from known normal system behavior. As we see next,
KAIROS uses these suspicious edges to detect (§4.3)
and investigate (§4.4) anomalies.

4.3. Anomaly Detection

At a high level, KAIROS performs anomaly detection at
the level of time windows. A time window T contains all
system events (i.e., provenance edges) whose timestamps
fall within a specific period of wall-clock time. Within
a time window, KAIROS identifies a set of suspicious
nodes S based on the reconstruction errors of graph
edges (§4.2) and the rareness of the nodes. KAIROS
then incrementally builds queues of time windows

based on each time window’s S . More specifically, time
windows within a queue q are correlated through their
suspicious nodes; therefore, a queue captures the activity
of suspicious nodes over time and between each other.
KAIROS can construct many time window queues, and
each time window can belong to multiple queues as long
as correlation exists between time windows in those
queues. KAIROS assigns an anomaly score to each queue
and flags a queue as anomalous if its anomaly score
is above an anomaly threshold. Consequently, all time
windows in an anomalous queue are deemed abnormal.

KAIROS analyzes time window queues, instead of only
individual edges or individual time windows, because
KAIROS is cognizant of the distinctive characteristics of
modern attacks. Advanced adversaries today frequently
leverage the “low-and-slow” attack pattern (§2.2), so
that it is difficult to distinguish malicious events from
benign but unusual system activities in the background.
However, while these unusual activities are typically
discrete, events belonging to an attack are connected
via information flow over a long time period [3]. Time
window queues provide KAIROS with additional context
necessary to distinguish attack behavior from unusual
but benign activity and further, to reconstruct series of
events constituting the attack (§4.4).

In the remainder of this section, we describe in detail
the process of identifying suspicious nodes within a time
window (§4.3.1), constructing queues of time windows
(§4.3.2), and identifying abnormal queues (§4.3.3).

4.3.1. Identifying Suspicious Nodes. KAIROS considers
a node in a time window T to be suspicious if the node
satisfies the following two properties:
Anomalousness: A node is anomalous if it is a source or
a destination node of an edge that has a reconstruction
error (§4.2) greater than a reconstruction threshold.
KAIROS computes a reconstruction threshold σT for
each time window T based on the reconstruction
errors of all the edges in T . In our experiments, σT
is 1.5 standard deviations (SDs) above the mean of all
reconstruction errors in a time window.
Rareness: A node is rare if its corresponding system
entity does not appear frequently in a benign execution.
We use the inverse document frequency (IDF) [39] to
compute a node’s rareness. That is, for a given node
v, we calculate:

IDF(v)=ln(
N

Nv+1
)

where N is the total number of time windows and Nv

the number of time windows that contain the node v. A
node v receives the maximum IDF if it does not exist in
the past, i.e., Nv=0. Note that the higher a node’s IDF,

the rarer it is. KAIROS considers a node to be rare if its
IDF value is above the rareness threshold α. KAIROS
identifies a set of suspicious nodes ST satisfying both
anomalousness and rareness for each time window T .

Prior work, such as NoDoze [19] and PrioTracker [40],
also explored frequency-based approaches to measuring
rareness. However, KAIROS’s approach is novel, because
(1) KAIROS combines frequency with graph learning
to identify suspicious nodes, while prior work either
considers only frequency or with node fan-outs, which
discounts important structural and temporal anomalies;
and (2) KAIROS leverages frequency in the context of
anomaly detection while both systems focus only on
forensic analysis.

4.3.2. Constructing Queues of Time Windows.
KAIROS constructs time window queues iteratively, as
new time windows appear in a streaming provenance
graph. For a new time window Tnew, KAIROS either
assigns Tnew to one or more existing queues or creates
a new queue containing only Tnew. That is, Tnew is
appended to an existing queue q if:

∃T ∈q :STnew∩ST ̸=∅
where T represents any time window in q. If Tnew is
not correlated to any existing queues through suspicious
nodes, Tnew itself becomes the start of a new queue.

4.3.3. Detecting Anomalous Queues. The anomaly
score of a queue q is the product over the anomaly
scores of all the time windows Ti in the queue:

AnomalyScore(q)=

n∏
i=1

AnomalyScore(Ti)

The anomaly score of a time window T is the mean
of the reconstruction errors of the edges in T whose
reconstruction errors are above the reconstruction
threshold σT (§4.3.1).

KAIROS incrementally updates the anomaly score of a
queue at run time when a new time window is appended
to the queue. Each time a queue’s anomaly score is up-
dated, KAIROS compares the updated anomaly score with
the anomaly threshold β to determine whether the queue
is abnormal. KAIROS uses benign validation data to set
β after model training. If a queue’s anomaly score at run
time (during test) exceeds β, the queue (and thus all time
windows in the queue) are considered to be anomalous.

4.4. Anomaly Investigation
While anomalous time window queues (§4.3)

significantly reduce the size of the graph that sysadmins
must inspect in case of an intrusion alarm, they can still
contain thousands of nodes and edges. To further lessen
the burden on the analyst, KAIROS automates the attack

investigation process by constructing candidate summary
graphs from anomalous time window queues. KAIROS
does so without relying on any prior attack knowledge;
therefore, its ability to reconstruct more precise attack
footprints is not limited to previously known attacks.

Given an anomalous queue q, KAIROS first applies
standard provenance graph reduction techniques [41]
to reduce the size of the graph in q without changing
its semantics. For example, KAIROS merges edges from
the same source and destination nodes if they are of
the same type. KAIROS’ graph reduction does not affect
anomaly detection, because KAIROS performs reduction
only after it detects an anomalous queue.

Similar to prior work [42], we observe that attack
activities typically form a dense community of nodes
that are connected via edges of high reconstruction
errors, separating them from other, non-attack-related
nodes. Thus, after graph reduction, KAIROS leverages
the community discovery algorithm Louvain [43] to
identify those communities.

To do so, KAIROS first constructs a weighted graph Gq

from all the anomalous queues by adding to Gq any edge
e that has a REe greater than the reconstruction threshold
σT (§4.3.1) of its corresponding time window T :

Gq={e :REe>σT ,∀e∈T ,∀T ∈q}
Gq is the input graph to Louvain, and the reconstruction
error REe of each edge in Gq is the weight of the edge.

Then, Louvain starts with each node in Gq representing
a separate community. For every node v∈Gq, it moves
v from its current community to one of its neighboring
communities that leads to the largest improvement
(if any) of modularity, which measures the degree of
connection density within communities compared to
that between communities:

Modularity=
∑
c

[∑
in

2m
−
(∑

tot

2m

)2
]

where
∑

in is the sum of the REs of the edges in
the community c, and

∑
tot is the sum of the REs

of c’s neighboring edges (i.e., edges with one of their
incident nodes inside c and the other one outside). m
is the sum of the REs of all edges in Gq. Note that v
remains in its community if relocating it achieves no
modularity gain. Louvain runs this process repeatedly
until modularity no longer increases.

To the best of our knowledge, KAIROS is the
first to bridge graph learning and community detection
in the context of anomaly detection. For example,
HERCULE [42] also leverages community detection
but pre-defines 29 edge features to cluster edges. In
contrast, KAIROS avoids manual feature engineering

by using learned anomaly scores.
The resulting communities are then simplified

to create candidate summary graphs. These graphs
concisely describe malicious behavior that spans long
time periods and involves multiple stages of an attack
kill-chain [3], although sometimes, they might also
represent abnormal but otherwise benign system activity
(due to the nature of anomaly-based detection [44]).
However, as we see in §5.5, sysadmins can easily dismiss
benign candidate graphs (i.e., false alarms) and quickly
identify the attacker’s footprints from small but attack-
revealing graphs without the need to backtrack [18]
or forward-track [45] the entire provenance graph. In
fact, analyzing those small graphs is the only time
KAIROS requires expert knowledge in its entire intrusion
detection pipeline. Unlike prior systems [3, 17, 22]
that require expert-crafted attack signatures and manual
exploration of the whole provenance graph, KAIROS
greatly reduces human involvement. Sysadmins still
have the option to inspect the entire graph for further,
in-depth analysis, but only if they choose to do so.

In §5.2, we show how sysadmins can update KAIROS’
model based on benign candidate graphs to continuously
improve the quality of detection and investigation.

5. Evaluation

We implemented a KAIROS prototype in Python. We
use scikit-learn [46] to implement hierarchical feature
hashing (§4.1) and PyG [47] to implement KAIROS’
graph learning framework (§4.2). Louvain is implemented
using NetworkX [48]. Finally, we use GraphViz [49]
to visualize summary graphs for manual inspection.

We evaluate KAIROS on eight publicly available
datasets, analyzing kernel-level provenance data that
captures whole-system behavior of various platforms
(namely Linux, FreeBSD, and Android) with and
without attacks. §5.1 describes the experimental datasets
in detail. All experiments are performed on a server
running CentOS 7.9 with 2.20GHz 20-core Intel Xeon
Silver 4210 CPU and 64 GB of memory. Unless
otherwise stated, we set the following hyperparameters
in all the experiments except those in §5.4, where we
examine the effect of hyperparameters on KAIROS’
performance: node feature embedding dimension |Φ|
= 16, node state dimension |s(v)|=100, neighborhood
size |N |=20, edge embedding dimension |z|=200, and
time window length |tw|=15 minutes. Our evaluation
focuses on answering the following research questions:
Q1. Can KAIROS accurately detect anomalies in a
running system under attack, especially when they are

Table 2. SUMMARY OF THE EXPERIMENTAL DATASETS.

Dataset # of Nodes # of Edges
(in millions)

of Attack
Edges

% of Attack
Edges

Manzoor et al. 999,999 89.8 2,842,345 3.165%
DARPA-E3-THEIA 690,105 32.4 3,119 0.010%
DARPA-E3-CADETS 178,965 10.1 1,248 0.012%
DARPA-E3-ClearScope 68,549 9.7 647 0.006%
DARPA-E5-THEIA 739,329 55.4 86,111 0.156%
DARPA-E5-CADETS 90,397 26.5 793 0.003%
DARPA-E5-ClearScope 91,475 40.0 4,044 0.010%
DARPA-OpTC 9,485,265 75.0 33,504 0.045%

Table 3. CHARACTERISTICS OF THE MANZOOR ET AL. DATASET.

Scenarios # of Graphs Average #
of Nodes

Average #
of Edges

YouTube 100 8,292 113,229
Gmail 100 6,827 37,382
Video Game 100 8,831 310,814
Attack 100 8,891 28,423
Download 100 8,637 112,958
CNN 100 8,990 294,903

low-and-slow e.g., the APT in §2.2) and thus difficult
to detect? (§5.2)
Q2. How does KAIROS compare to state-of-the-art?
(§5.3)
Q3. How do hyperparameters affect KAIROS’ detection
and run-time performance? (§5.4)
Q4. Can KAIROS accurately reconstruct attack behavior
from the original provenance graph? (§5.5)
Q5. What is KAIROS’ end-to-end performance? (§5.6)

5.1. Datasets

We obtain our experimental datasets from two sources,
Manzoor et al. [50] and DARPA [24, 51, 52]. They are
the few open-source datasets widely used in evaluating
provenance-based systems [2, 3, 17, 21, 53–57]. Table 2
summarizes the statistics of the graphs in those datasets.

5.1.1. Manzoor et al. Dataset. This dataset contains
provenance graphs captured by SystemTap [58] from
six activity scenarios in a controlled lab environment.
Five of them (i.e., watching YouTube, checking Gmail,
playing a video game, downloading files, and browsing
cnn.com) contain only benign activity. The attack
scenario involves a drive-by download from a malicious
URL that exploits a Flash vulnerability, which allows the
attacker to gain root access. Manzoor et al. repeatedly
ran each scenario to generate 100 graphs per scenario.
Table 3 details the graph statistics.

This dataset allows us to demonstrate KAIROS’ high
efficacy on traditional, “smash-and-grab” attacks, where
the attacker quickly subverts a system. It also allows
us to fairly compare KAIROS with Unicorn [2] and
ThreaTrace [8], two state-of-the-art PIDSes that perform

anomaly detection on whole-system provenance graphs.
Both systems used this dataset for their own evaluations.
However, it is difficult to demonstrate KAIROS’ ability
to reconstruct attack activity with this dataset, as the
fine-grained attack ground truth (i.e., the exact attack
procedure) is not public and thus unknown to us. We
use DARPA datasets (§5.1.2) for such evaluation.
Data Labeling. We label the Attack scenario
graphs as attack and the remaining graphs as benign.
Due to the lack of attack knowledge, we use a single
time window (§4.3) for each graph (i.e., the time
window queue length |q| is 1). Thus, an attack graph
corresponds to a single attack time window. From
each benign scenario, we use only one graph to train
KAIROS and 24 graphs as validation data to configure
detection thresholds (§4.3) to not introduce bias in their
selection [59]. We use the remaining benign graphs (75
for each scenario) and all 100 attack graphs as test data.

5.1.2. DARPA Datasets. We use datasets from DARPA’s
Transparent Computing (TC) and Operationally
Transparent Cyber (OpTC) programs. TC organized
several adversarial engagements that simulated real-world
APTs on enterprise networks. During the engagements,
a red team launched a series of attacks towards an
enterprise’s security-critical services (e.g., web, email,
and SSH servers) while engaging in benign activities
such as browsing websites, checking emails, and SSH
log-ins. A separate team deployed various provenance
capture systems (e.g., CADETS, ClearScope, and
THEIA) on different platforms to record whole-system
host activity. The provenance data from the third (E3) and
the fifth (E5) engagement is publicly available [24, 51].

The OpTC dataset contains benign activities of 500
Windows hosts over seven days and additional three
days of a mixture of benign and APT activities. The
red team simulated a three-day long APT attack using
a number of known CVEs on a small subset of hosts.
The large scale of this dataset (with its total size in
the order of a few dozen TBs) enables us to evaluate
KAIROS under a more “real” setting, where the amount
of test data is much larger than that of training data.
Specifically, we randomly select six hosts and use only
one day of the benign data from them for training, one
additional benign day for validation, but all three attack
days from all hosts for testing. Table 2 details the graph
statistics from different provenance systems. Table 11
in Appendix A summarizes all DARPA attacks.

We use DARPA datasets to show that KAIROS
can (1) accurately detect anomalies even though they
are hidden among a large amount of benign activity

Table 4. KAIROS’ EXPERIMENTAL RESULTS.

Datasets TP TN FP FN Precision Recall Accuracy AUC
Manzoor et al. 100 375 0 0 1.000 1.000 1.000 1.000
E3-THEIA 9 216 2 0 0.818 1.000 0.991 0.995
E3-CADETS 4 174 1 0 0.800 1.000 0.994 0.997
E3-ClearScope 5 112 2 0 0.714 1.000 0.983 0.991
E5-THEIA 2 173 1 0 0.667 1.000 0.994 0.997
E5-CADETS 7 238 9 0 0.438 1.000 0.965 0.982
E5-ClearScope 10 217 5 0 0.667 1.000 0.978 0.989
OpTC 22 1210 16 0 0.579 1.000 0.987 0.993

Table 5. KAIROS’ ADJUSTED EXPERIMENTAL RESULTS.

Datasets TP TN FP FN Precision Recall Accuracy AUC
Manzoor et al. 100 375 0 0 1.000 1.000 1.000 1.000
E3-THEIA 10 216 1 0 0.909 1.000 0.996 0.998
E3-CADETS 4 174 1 0 0.800 1.000 0.994 0.997
E3-ClearScope 5 112 2 0 0.714 1.000 0.983 0.991
E5-THEIA 2 173 1 0 0.667 1.000 0.994 0.997
E5-CADETS 16 238 0 0 1.000 1.000 1.000 1.000
E5-ClearScope 10 217 5 0 0.667 1.000 0.978 0.989
OpTC 32 1210 6 0 0.842 1.000 0.995 0.998

across a long time span, and (2) precisely distill the
original provenance graph (that describes both benign
and attack activity) into a compact attack summary
graph without prior attack knowledge, even though
attack activity is several orders of magnitude rarer
(see Table 2). Moreover, we use (3) the TC dataset to
compare KAIROS with Unicorn and ThreaTrace, and (4)
the OpTC dataset to demonstrate that KAIROS can be
realistically deployed in a large-scale network of systems.
Our motivating example (§2.2) uses the E3 dataset.
Data Labeling. Unlike Manzoor et al., DARPA provides
attack ground truth, which enables us to label individual
nodes and edges related to the attack. Thus, we can
manually compare KAIROS’ reconstructed attack
graph with the ground-truth graph. It is worth noting
that the ground truth is used only by us to verify
KAIROS’ efficacy; KAIROS does not leverage any attack
knowledge in its own analysis.

In both TC and OpTC, attack activity occurred only
in a subset of time windows within an attack day. For
instance, in our motivating example (§2.2), the ground
truth shows some attack activity on April 10th, 2018 at
13:41 when the attacker attempted to manipulate Firefox.
The next attack activity occurred almost an hour later.
As such, we mark the time window that includes the
Firefox event as an attack time window. Since each
time window is 15-minute long in our experiments, the
next several time windows are therefore benign time
windows, until the attack activity resumes.

Table 12 in Appendix A summarizes specific benign
and attack days we use for training, validation, and
detection.

5.2. Detection Performance
To evaluate KAIROS’ detection performance, we replay

test data in each dataset as if KAIROS was monitoring the

behavior of the host system as it runs. Model training is
performed offline using only benign data. Note that this
experimental setup automatically ensures two desiderata
of PIDSes introduced in §1: scope and attack agnosticity.

Table 4 shows the precision, recall, accuracy, and
area under ROC curve (AUC) results for all datasets.
We compute these metrics based on time windows.
As mentioned in §5.1, we manually label each time
window in a provenance graph as either benign or attack
according to the ground truth. If KAIROS marks a benign
time window as anomalous (i.e., if KAIROS mistakenly
includes a benign time window in an anomalous queue),
we consider the time window to be a false positive (FP).
On the other hand, if KAIROS correctly marks an attack
time window as anomalous, it is counted as a true
positive (TP). False negatives (FN) and true negatives
(TN) are calculated in a similar fashion. Table 4 also
shows the number of TP, TN, FP, and FN time windows.

We see in Table 4 that KAIROS can accurately detect
all attacks, achieving 100% recall. KAIROS reports FPs
(which lead to lower precision) in a subset of experiments
for several reasons. First, KAIROS continues to assign
high reconstruction errors to edges whose nodes were
under the attacker’s influence even after the attacker stops
actively manipulating them. KAIROS still considers these
entities to be compromised, because KAIROS remembers
the history of their states (§4.2), part of which indeed in-
volves the attacker. However, in the ground truth, entities
that remain active after the attack are often dismissed,
since they are no longer part of the attack. For example, in
E5-CADETS, the attacker exploited a vulnerable Nginx
process to download and execute a malicious payload.
Once the payload was executed, subsequent attack activ-
ity no longer involved Nginx, but Nginx continued
to serve benign requests. Any entity, once compromised
by an attacker, should be considered problematic. We
manually identify these “fake” FPs (i.e., processes that po-
tentially remain under an attacker’s control but whose sub-
sequent behavior is not part of the ground truth), and we
show the adjusted results in Table 5. Notice the significant
improvement for E3-THEIA, E5-CADETS, and OpTC.

Second, KAIROS assigns high reconstruction errors to
novel activities of new applications that were introduced
only in the test data. Since their behavior is completely
unknown, it is abnormal to KAIROS, albeit non-malicious.
This is an example of concept drift [28], where new
benign behavior does not fit into the underlying
statistical properties learned by the model. For example,
in E5-ClearScope, we test KAIROS on May 15th and
17th, 2019 when the attack took place. KAIROS reports
FPs on both days. Upon inspection of the candidate

Table 6. E5-CLEARSCOPE’S MAY 17th DETECTION PERFORMANCE
WITH AND WITHOUT RETRAINING BASED ON MAY 15th FPS.

E5-ClearScope TP TN FP FN Precision Recall Accuracy AUC
Without retraining 6 87 2 0 0.750 1.000 0.979 0.989
With retraining 6 89 0 0 1.000 1.000 1.000 1.000

summary graphs from KAIROS (Fig. 5), we easily
conclude that all the FPs are caused by the behavior of
screencap, which does not appear in the training data.
We next show how sysadmins can effectively mitigate
FPs by incrementally retraining KAIROS’ model.
Model Retrain. KAIROS makes model retraining more
practical, because it enables sysadmins to quickly identify
false alarms by providing them with compact candidate
summary graphs to inspect (§5.5). To update the model,
we repeat the same training process (§4.2) on the existing
model using only the provenance data from the FP time
windows. Table 6 shows the experimental results on
E5-ClearScope before and after we identify FP time
windows and update the model. More specifically, in
addition to the original training data, we further train
the model on the FP data on May 15th, which was
previously used as part of the test data. We then evaluate
the updated model on the May 17th’s data, which is the
remaining test data. For fair comparison, Table 6 reports
the results before model update only on May 17th (while
Table 5 reports the results on both days). KAIROS can
continuously learn from FPs to address concept drift and
avoid making similar mistakes in the future.

In practice, KAIROS’ model should be regularly
updated as new benign behavior emerges. Note that
retraining potentially breaks the assumptions made in
our threat model (§3), since benign training data may
not be captured in a controlled environment where the
absence of an attacker is guaranteed. As such, attackers
may exploit retraining to poison the model [60, 61].
Detecting and preventing model poisoning [62] is further
discussed in §6, along with other possible evasion
strategies, but it is beyond the scope of this work. In
summary, while KAIROS supports retraining, we leave
its thorough exploration and evaluation to future work.

5.3. Comparison Study
Fairly comparing KAIROS with state-of-the-art

PIDSes is hard for several reasons. First, the majority
of PIDSes are signature-based [3, 17, 22, 63, 64],
while KAIROS detects anomalies. The performance
of signature-based PIDSes depends on the quality of
the signatures, which are often proprietary knowledge
unavailable to the public. Comparison between signature-
and anomaly-based PIDSes can easily be biased
by manipulating signatures that can be matched to

the attack. Therefore, we exclude signature-based
PIDSes for comparison. Second, most anomaly-based
PIDSes [14, 65] are closed-source and evaluated using
private datasets. We attempt to re-implement some
PIDSes based on published descriptions, but it is
challenging to verify correctness with no access to
datasets to reproduce the original results. For example,
we re-implemented ProvDetector [27] but are unable
to compare it against KAIROS due to unreasonably
long run time on even the smallest DARPA dataset (we
attribute this outcome to our lack of skills, not to the
original authors). Similarly, ShadeWatcher [7] is not fully
open-source. Specifically, we confirm with the authors
that a major component of ShadeWatcher is proprietary.
Unfortunately, we are unable to replicate the algorithm
from the description in its publication alone. Last but not
least, PIDSes might use different metrics to report their
detection performance, further complicating comparison
and giving a misleading impression of performance. We
further discuss the issues of evaluating PIDSes in general
in §6 and leave benchmarking PIDSes to future work.

Due to these difficulties, we choose Unicorn [2] and
ThreaTrace [8] as the primary PIDSes for comparison,
because they are anomaly-based, open-source, and evalu-
ated by the authors using both Manzoor et al. and a subset
of DARPA datasets. Similarly, StreamSpot [21] and Frap-
puccino [20] are also open-source anomaly detection sys-
tems. However, Unicorn has been shown to outperform
these systems [2]. Our own evaluation of StreamSpot on
DARPA’s TC datasets confirmed prior performance anal-
yses by others: StreamSpot cannot detect any anomalies
in all TC datasets. Therefore, due to space constraints,
we will not further discuss StreamSpot or Frappuccino.

5.3.1. Unicorn. Unicorn builds a behavioral model of
a system by featurizing an evolving provenance graph
into a series of fixed-size, incrementally-updatable graph
sketches. Each sketch represents a snapshot describing
the entirety of the graph from the very beginning of
system execution till the point where the snapshot is
taken. The frequency of generating a new sketch is a
hyperparameter, determined by the number of new edges
streamed to the graph. At test time, Unicorn can quickly
generate and update graph sketches of the system
being monitored and compare them with known benign
sketches in the model to perform run-time detection.

We use the same evaluation protocol as in Unicorn [2]
to ensure fairness. Specifically, Unicorn computes
evaluation metrics at the graph level, instead of the
finer-grained time-window level (as in KAIROS). That
is, Unicorn classifies the entire graph as benign or

Table 7. COMPARISON STUDY BETWEEN UNICORN AND KAIROS.

Datasets System Precision Recall Accuracy

Manzoor et al. Unicorn 0.98 0.93 0.96
KAIROS 1.00 1.00 1.00

E3-CADETS Unicorn 0.98 1.00 0.99
KAIROS 1.00 1.00 1.00

E3-THEIA Unicorn 1.00 1.00 1.00
KAIROS 1.00 1.00 1.00

E3-ClearScope Unicorn 0.98 1.00 0.98
KAIROS 1.00 1.00 1.00

containing an attack, and uses it as a single data point to
calculate detection performance. To adopt Unicorn’s way
of computing metrics, we consider an entire graph to be
malicious if KAIROS marks at least one time window
as attack. We do not need to modify the experimental
results for the Manzoor et al. dataset, because each
graph is already a single time window. Since Unicorn
was not originally evaluated on the DARPA E5 datasets,
we will not compare Unicorn on these datasets for
fairness (because extensive hyperparameter tuning might
be needed for Unicorn to produce the best results).
Experimental Results. Table 7 shows that KAIROS
either outperforms Unicorn or achieves equally high
performance in all datasets. By comparing Table 7
with Table 5, we also see that a coarse-grained,
graph-level evaluation can be misleading, since the
detection system might not accurately or completely
identify the entirety of attack activity.

Unlike KAIROS, Unicorn does not support fine-grained
detection or automated post-detection investigation.
We notice a time lag between the first occurrence of
a malicious event and Unicorn’s detection of system
anomalies, which results in additional graph sketches.
Since a graph sketch is a vectorized graph representation
that describes an entire evolving graph, these additional
sketches could represent tens of thousands of more
graph elements that sysadmins must inspect on top
of the sketch that actually contains attack activity.
Consequently, when Unicorn raises an alarm, attack
activity can be hidden anywhere within the graph,
requiring sysadmins to blindly backtrack the graph to
reason about the alarm. In contrast, KAIROS not only
produces fewer false alarms, but also creates compact
summary graphs that highlight possible attack footprints,
all without any human intervention (§5.5).

5.3.2. ThreaTrace. ThreaTrace builds a model for each
type of nodes in a provenance graph to detect anomalous
nodes. We use both the Manzoor et al. dataset and a
subset of DARPA datasets used by ThreaTrace for fair
comparison. ThreaTrace converts its node-level detection
to graph-level for the Manzoor et al. dataset, since

Table 8. COMPARISON STUDY BETWEEN THREATRACE AND KAIROS.

Datasets System Precision Recall Accuracy

Manzoor et al. ThreaTrace 0.98 0.99 0.99
KAIROS 1.00 1.00 1.00

E3-CADETS ThreaTrace 0.90 0.99 0.99
KAIROS 1.00 0.95 0.99

E3-THEIA ThreaTrace 0.87 0.99 0.99
KAIROS 1.00 0.95 0.99

E5-CADETS ThreaTrace 0.63 0.86 0.97
KAIROS 1.00 0.85 0.98

E5-THEIA ThreaTrace 0.70 0.92 0.99
KAIROS 1.00 0.92 0.99

node-level ground truth is unavailable. It considers a
graph to be anomalous if the number of anomalous nodes
exceeds a predefined threshold. KAIROS and ThreaTrace
are thus directly comparable on this dataset. For DARPA
datasets, we adopt ThreaTrace’s way of computing
metrics and use anomalous nodes in suspicious time
windows to compute precision, recall, and accuracy.
Experimental Results. Table 8 shows that KAIROS
achieves comparable performance to ThreaTrace in all
datasets. We note that ThreaTrace authors manually
label as anomalous both the nodes in the ground truth
and their 2-hop ancestor and descendant nodes, even
though the neighboring nodes were not involved in an
attack. More concerningly, benign nodes mistakenly
detected by ThreaTrace as anomalous are not considered
to be FPs as long as any of their 2-hop neighbors
are labeled as anomalous. Thus, a benign node as far
as 4 hops away from a true anomalous node in the
ground truth can be misclassified by ThreaTrace but not
reported as a FP. This labeling approach likely leads to
favorable precision and recall, but even then, KAIROS
outperforms ThreaTrace in most cases. We further
discuss the issues of benchmarking PIDSes in §6.

Unlike KAIROS, ThreaTrace cannot reconstruct a
complete attack story. While ThreaTrace’s node-level
detection can facilitate attack comprehension to some
extent, this approach is impractical when the graph is
large and the number of FP nodes is high. For example,
ThreaTrace identified over 63K FP nodes in the
E5-THEIA experiment (after using the aforementioned
labeling strategy), which would undoubtedly overwhelm
human analysts. This limitation is explicitly recognized
by the ThreaTrace authors.

5.4. Hyperparameter Impact on Performance
In previous sections, we evaluate KAIROS with

a set of fixed hyperparameters. Here, we vary each
independently and report its impact on detection and
run-time performance. We show detailed results for
E3-THEIA here and include results for all TC datasets
in Appendix B due to space constraints.

(a) |Φ| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 3. Detection performance (precision, recall, accuracy, and AUC) on E3-THEIA. We vary one hyperparameter and fix the others.

(a) |Φ| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 4. Average memory usage on E3-THEIA with varying hyperparameter values. We vary one hyperparameter and fix the others.

Node Embedding Dimension (|Φ|). Node embedding
encodes initial node features. We see in Fig. 3(a) that a
relatively small dimension is sufficient to encode these
features. A large dimension leads to sparse features,
which could severely affect detection performance
and incur large memory overhead (Fig. 4(a)). On the
other hand, if |Φ| is too small, we instead increase
the probability of hash collision in hierarchical feature
hashing (§4.1). We find |Φ| = 16 to be the ideal
dimension across all datasets (Fig. 7(a)).

Node State Dimension (|s(v)|). A node’s state captures
the temporal evolution of a node’s neighborhood over
time. In Fig. 3(b), when |s(v)| is too small, KAIROS has
difficulties in retaining information about past events. On
the other hand, if |s(v)| grows too large, detection perfor-
mance degrades, because states might contain outdated
history irrelevant to current events [2]. |s(v)| also influ-
ences memory overhead (Fig. 4(b)), because a state vector
is associated with each node. When |s(v)|=100, across
all TC datasets (Fig. 7(b)), KAIROS can fully contextu-
alize a new event using a node’s past interactions with
other entities, while incurring small run-time overhead.

Neighborhood Sampling Size (|N |). A node’s
neighborhood captures the structural role of a node,
so that two nodes with a similar neighborhood likely
have the same structural role [66]. Too small of a
neighborhood sampling size makes it difficult for
KAIROS to understand a node’s structural role. However,
as we continue to increase |N |, detection performance no
longer improves (Fig. 3(c)). This is because the majority
of the nodes in a dataset have fewer neighboring nodes
than |N |. For example, in E3-THEIA, about 97% of the
nodes have a neighborhood size of 20 or less. As such,
increasing |N | above 20 has little to no effect. This also
explains why the additional memory overhead we incur

is not proportional to the increase in |N | (Fig. 4(c)). We
find |N |=20 to be ideal among all datasets (Fig. 7(c)).

Edge Embedding Dimension (|z|). The edge embedding
z encodes both the state and the structural information
of the graph surrounding an edge. With increasing |z|,
the edge embedding can better retain temporal and
structural information for the decoder to reconstruct
an edge. However, an overly large |z| complicates the
model and affects KAIROS’ generalization capability.
Fig. 3(d) confirms our hypothesis: Within a certain range,
increasing |z| improves KAIROS’ detection performance,
until we reach a point where the performance starts to
degrade. Memory overhead (Fig. 4(d)) also increases as
|z| grows, as expected. Across all datasets (Fig. 7(d)),
|z|=200 gives the best detection performance.

Time Window Length (|tw|). The length of a time
window determines the frequency of KAIROS performing
its anomaly detection algorithm (§4.3). Generally, a
longer time window accumulates a larger number of
system events. Since the amount of benign activity
overwhelmingly dominates that of attack activity (§2.2.2),
a large time window can make anomaly detection difficult.
As we see in Fig. 3(e), while a time window length
between 5-30 minutes has little influence on detection
performance, when |tw| is too large (60 minutes),
KAIROS generates more false negatives, which leads to
low recall (and high precision) and overall low accuracy.
When |tw| is small (5 minutes), we see a slight decline
in performance, because a short time window can limit
KAIROS’ ability to accurately contextualize an event.
However, it is unnecessary to use small time windows just
to improve detection timeliness, because APT actors only
slowly infiltrate their target systems (§2.2.2). For example,
in E3-THEIA, the attacker performed two adjacent attack
activities in a kill-chain almost one hour apart (§5.1.2).

Table 9. STATISTICS OF ATTACK SUMMARY GRAPHS.

Dataset # of Nodes # of Edges # of Edges in
Time Windows Reduction

E3-THEIA 20 31 3,393,536 109,469X
E3-CADETS 18 26 115,712 4,450X
E3-ClearScope 10 16 210,944 13,184X
E5-THEIA 11 17 826,368 48,610X
E5-CADETS 11 17 351,232 20,661X
E5-ClearScope 10 10 344,064 34,406X
OpTC 77 101 1,065,984 10,554X

We find |tw|=15 minutes to be ideal among all datasets
(Fig. 7(e)). Fig. 4(e) shows that increasing the time
window length only slightly increases memory overhead,
even when the length is large. This is because KAIROS
processes a provenance graph in a streaming fashion
and does not keep the entire graph in memory.

Note that CPU utilization is consistently less than 1%
in all E3-THEIA experiments. Varying hyperparameter
values only slightly impacts CPU utilization. Fig. 9
shows the 90th percentile CPU utilization for all TC
experiments.

5.5. Attack Reconstruction
The ability to reconstruct complete but concise

attack stories is a first-order design metric in KAIROS.
It is particularly important for anomaly detection
systems, especially the ones (like KAIROS) that leverage
deep learning. This is because attack reconstruction
(1) establishes trust on the decisions, (2) facilitates
the necessary human-in-the-loop component in
understanding system anomalies, and (3) expedites the
process of identifying and reducing FPs (§5.2) [67].

In the DARPA datasets, KAIROS is able to recon-
struct the true attack activity describing the APT, while
reporting only a couple of benign candidate graphs
(§4.4). Table 9 shows the size of the attack summary
graph that KAIROS generates from an anomalous time
window queue in each DARPA dataset (the OpTC dataset
contains three APT scenarios, while each experiment in
TC contains only one). We see that candidate summary
graphs are small (due to graph reduction, see §4.4). In
fact, compared to the size of the anomalous time window
queues from which they are generated, the size of attack
summary graphs is up to five orders of magnitude smaller.
For example, in E3-THEIA, KAIROS achieves 109,469X
edge reduction, narrowing down the total number of
edges that require manual inspection from 3.4 million in
anomalous time window queues to only 31. This means
that sysadmins can quickly and easily reason about can-
didate summary graphs, eliminate the benign ones, and
identify true attack activity. In the remainder of this sec-
tion, we use an attack and a benign summary graph to il-
lustrate how KAIROS’ ability to construct concise graphs

Figure 5. A benign candidate summary graph.

enables effective and efficient attack investigation. Due
to space constraints, we provide full graph results in Ap-
pendix C, Appendix D, and a separate document [68].

The Attack Summary Graph. Fig. 1 shows a candidate
summary graph from KAIROS that describes APT
activity in E3-THEIA. This graph and DARPA’s
ground truth match almost perfectly, even though a
small number of perhaps extraneous graph elements
not mentioned in the ground truth (colored blue) are
included in the graph. However, notice that these graph
elements are closely connected to system entities that
are indeed under the influence of the attacker.

KAIROS also misses several entities (colored in pink
and dashed) explicitly mentioned in the ground truth. For
example, the socket nodes and the edges describing the
communications between the compromised Firefox
process and two malicious IP addresses are not included.
This is because in general, it is common for a Firefox
process to read from and write to an external IP. As such,
it is difficult to classify those behaviors without providing
e.g., a complete allowlist/blocklist. However, KAIROS
accurately identifies Firefox’s anomalous behavior
(colored red) as a result of these communications with
the malicious IPs. Therefore, sysadmins familiar with
the system environment can easily verify the presence
and the progression of an attack, even without the
missing components. Note that graph reduction (§4.4)
does not lead to missing entities; instead, these are the
result of low REs during anomaly detection.

The Benign Summary Graph. Fig. 5 shows a benign
candidate summary graph. Unlike attack graphs, benign
graphs from KAIROS typically have one or two process
nodes that are hubs, forming small “communities” with
well-defined behavioral boundaries from other processes.
These graphs are isolated by KAIROS, often because they
represent benign but uncommon activity. For example,
as discussed in §5.2, screencap in Fig. 5 never
appeared in training, thus resulting in relatively high
reconstruction errors among its edges. However, it is easy
for sysadmins to quickly disregard this benign candidate
summary graph, because it is small and well-structured.

Figure 6. End-to-end time window performance in E3-THEIA. Each
bar represents the time it takes to process the graph in a single time
window.

Table 10. SUMMARY OF EXECUTION TIME.

Dataset Min (s) Median (s) 90th Percentile (s) Max (s)
DARPA-E3-THEIA 0.9 12.1 35.2 228.8
DARPA-E3-CADETS 1.3 2.5 4.9 19.7
DARPA-E3-ClearScope 0.1 3.8 4.9 19.7
DARPA-E5-THEIA 3.6 38.3 124.7 376.2
DARPA-E5-CADETS 0.5 7.2 12.1 16.3
DARPA-E5-ClearScope 0.1 8.2 40.1 68.8
DARPA-OpTC 3.7 19.8 35.7 111.7

5.6. End-to-end Performance

KAIROS processes a streaming provenance graph
at regular intervals of a time window and raises an
intrusion alert when an anomalous time window queue
is detected (§4). We show in Fig. 6 the time it takes
for KAIROS to process 15-minute time windows on
E3-THEIA. Throughout this experiment, KAIROS takes
at most 228.8 seconds (or 25.4% of 15 minutes) to
process a single time window (which contains about
2.5M edges), well below the duration of a time window.
The median size of time windows in our dataset has
57K edges, which takes only 11.6 seconds to compute.
We cannot clearly show the execution time of many time
windows in Fig. 6, because it takes only about one second
(or less) to compute each, as they contain fewer than 10K
edges. KAIROS’ computational cost is proportional to the
number of graph elements in a time window. Table 10
summarizes time window execution times for all DARPA
datasets. Compared to StreamSpot [21], which processes
around 14K edges per second, KAIROS incurs slightly
higher latency, processing about 11K edges per second.
However, KAIROS significantly outperforms StreamSpot
in detection accuracy (§5.3). Moreover, prior work [2]
has shown that a provenance capture system typically
generates fewer than 10K edges per second, even when
the host system is busy. As such, KAIROS can just as
easily process a streaming provenance graph without
“falling behind”. Furthermore, as we discuss in §5.4,
KAIROS’ time window approach, similar to batch process-
ing implemented in Unicorn [2] and ThreaTrace [8], does
not affect its detection timeliness. Therefore, KAIROS
can effectively monitor a host system at run time.

6. Discussion
Data Poisoning. If attackers can poison training data
to include malicious activity, which is then learned by
a machine learning model, future attacks will remain
undetected. Data poisoning poses a serious threat to all
anomaly-based intrusion detection systems. To the best
of our knowledge, SIGL [14] is the only PIDS that has
evaluated its robustness against data poisoning in depth,
but its detection algorithm works at a much smaller
scale. Others, unfortunately, have much more limited
evaluation, if at all. For example, ShadeWatcher [7],
which has a system-wide scope equivalent to that of
KAIROS, attempts to evaluate data poisoning using
the DARPA datasets. The authors use one day of the
attack data during training and show that ShadeWatcher
can detect an attack on the second day. We perform
similar evaluation and obtain equally good results
showing that detection performance is barely affected.
However, such evaluation is misleading, because attack
activities performed on one day will be different on
another day. To properly evaluate robustness, we need
carefully-crafted, open-source datasets. Creating such
datasets is beyond the scope of this paper.
Evasion. An adversarial attacker with some knowledge
of an intrusion detection system can introduce noise
or mimic benign system behavior during an attack to
mislead the detection system. While evasion attacks [60,
61, 69], such as mimicry attacks [70], are a threat to all
PIDSes, evading deep graph learning based systems like
KAIROS is nontrivial. KAIROS differentiates between
benign and malicious activity based on both structural and
temporal interactions between system entities. Therefore,
to mimic benign behavior, the attacker must carefully
orchestrate attack activity such that a malicious process
interacts with a similar set of system objects in a similar
sequential order while ensuring that the actual attack
logic remains unchanged. This requires the attacker to
have a great knowledge of the target system’s benign be-
havior and likely the inner workings of the trained model.
Even then, prior work [14] has shown that existing ad-
versarial attacks on graphs cannot evade PIDSes, because
provenance graphs have more structural and temporal con-
straints than other types of graphs (e.g., social networks).
We further evaluated KAIROS using an evasion dataset
based on DARPA’s E3-THEIA published by a recent
robustness study [71]. KAIROS detected the camouflaged
attack, but in the summary graph (§4.4), it reported only a
small subset of the attack activity described in DARPA’s
ground truth. While we at first suspected that the evasion
approach proposed in the study was to some extent effec-
tive, upon further inspection, we discovered that the pub-

lished dataset contains only the attack behavior identified
by KAIROS, rather than the full attack traces included in
the original DARPA dataset. This discovery highlights the
importance of a meaningful intrusion report; a tool like
KAIROS would have helped the authors remedy this issue.
Limitations of Evaluation. We identify three major
issues in PIDS evaluation in general. First, there lacks
open-source implementation of published PIDSes for
comparison. Second, only limited publicly-accessible
datasets exist, and almost all of them are poorly
documented. It is thus difficult to identify any bias in
datasets that might produce misleading results. Third, no
single performance metric exists to ensure meaningful
comparison. PIDSes differ in their detection granularity;
in §5.3, ad-hoc conversion for the sake of comparison
inadvertently introduces biases. These issues weaken the
conclusion of our own evaluation (and potentially that of
others) and significantly hinder independent reproduction
of results. We encourage the community to advocate
public releases of software artifacts and datasets.

7. Related Work
Historically, PIDSes have had to make trade-offs along

four dimensions: scope, attack agnosticity, timeliness, and
attack reconstruction (§1). KAIROS is the first to reconcile
these dimensions while providing comparable, if not supe-
rior, detection performance. It is also the first to efficiently
integrate the reduction, detection, and investigation layers
of the system auditing stack [72] with minimal overhead.
Provenance-based Intrusion Detection. A number
of prior PIDSes have used signature-based techniques
to match known attack behavior in provenance
graphs [3, 17, 19, 22, 64]. However, these approaches
are not attack agnostic and therefore have difficulties in
detecting unknown attacks. Other approaches leverage
anomaly-based detection techniques, but they either
(1) fail to scale to the entire system [5, 14], (2) cannot
reconstruct attack stories [2, 7, 20, 21, 27], and/or (3)
require offline analysis [40]. KAIROS overcomes all
these limitations simultaneously, while achieving similar
or better detection and computational performance.
Provenance-based Investigation. PIDSes [3, 22] have
often relied on known attack signatures to provide
attack attribution for detection. Prior anomaly-based
PIDSes [10, 20, 21] require sysadmins to manually
inspect large anomalous graphs, thus difficult to use in
practice. Recently, ShadeWatcher [7] and ThreaTrace [8]
take a step in the right direction, identifying individual
anomalies at the node level. However, unlike KAIROS,
they fail to reconstruct complete and coherent attack
stories but merely provide a starting point for sysadmins

to sift through a large amount of data. Similarly
but perhaps more problematically, SIGL [14] not
only identifies just anomalous nodes, but also has
limited scalability, which makes it unsuitable to
analyze provenance graphs of a whole-system scope
to detect advanced attacks. Recently, Yang et al. [73]
proposed ProGrapher that, similar to Unicorn, detects
anomalies at the graph level. To support finer-grained
attack investigation, it ranks graph nodes based on
their degrees of anomalousness, which is similar to
SIGL [14]. Therefore, post-detection investigation
remains labor-intensive. Note that ProGrapher is closed-
source and reports worse overall detection accuracy
than KAIROS. DepComm [74] partitions a provenance
graph into process-centric communities based on
pre-defined random walk schemes and extracts for each
community paths that describes how information flows
through it. While paths provide more useful context
for attack investigation than nodes, DepComm requires
point-of-interest events or attack signatures from an IDS
(e.g., Holmes [3]) to reconstruct an attack story.
Provenance Reduction. Different techniques [5, 41, 75]
have been proposed to reduce the size of provenance
graphs. Reduction is performed either before intrusion
detection or during attack investigation to reduce
computational and memory overhead [72]. For example,
ShadeWatcher [7] performs causality preserving
reduction [41] before intrusion detection. In contrast,
KAIROS leverages reduction techniques post-detection
only to minimize a sysadmin’s mental load but performs
detection efficiently at scale on the entire graph. Thus,
KAIROS’ graph reduction does not affect detection.

8. Conclusion
KAIROS is the first provenance-based intrusion

detection system that detects system-wide anomalies and
generates succinct attack graphs to describe them without
prior attack knowledge. Our evaluation demonstrates
that KAIROS can effectively monitor long-running
systems at run time, outperforms the state-of-the-art,
and incurs minimal performance overhead.

Acknowledgments

We thank S&P 2023 and 2024 anonymous reviewers
for their insightful comments. We acknowledge the
support of the Natural Sciences and Engineering
Research Council of Canada (NSERC). Nous remercions
le Conseil de recherches en sciences naturelles et en
génie du Canada (CRSNG) de son soutien. This work
was partially supported by research funding from the

National Research Council Canada (NRC). This material
is based upon work supported by the U.S. National
Science Foundation under Grant CNS-2245442. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation.

References

[1] Z. Cheng, Q. Lv, J. Liang, Y. Wang, D. Sun,
T. Pasquier, and X. Han, “Kairos: Practical
Intrusion Detection and Investigation using
Whole-system Provenance,” in Symposium on
Security and Privacy (S&P’24). IEEE, 2024.

[2] X. Han, T. Pasquier, A. Bates, J. Mickens, and
M. I. Seltzer, “Unicorn: Runtime provenance-based
detector for advanced persistent threats,” in Network
and Distributed System Security Symposium
(NDSS’20). The Internet Society, 2020.

[3] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar,
and V. N. Venkatakrishnan, “HOLMES: real-time
APT detection through correlation of suspicious
information flows,” in Symposium on Security and
Privacy, (S&P’19). IEEE, 2019.

[4] M. Barré, A. Gehani, and V. Yegneswaran,
“Mining Data Provenance to Detect Advanced
Persistent Threats,” in International Workshop on
Theory and Practice of Provenance (TaPP’19).
USENIX, 2019.

[5] W. U. Hassan, M. Lemay, N. Aguse, A. Bates,
and T. Moyer, “Towards Scalable Cluster Auditing
through Grammatical Inference over Provenance
Graphs,” in Network and Distributed System
Security Symposium (NDSS’18). The Internet
Society, 2018.

[6] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying
intrusion detection and forensic analysis via
provenance awareness,” Future Generation
Computer Systems, vol. 61, pp. 26–36, 2016.

[7] J. Zengy, X. Wang, J. Liu, Y. Chen, Z. Liang,
T.-S. Chua, and Z. L. Chua, “ShadeWatcher:
Recommendation-guided cyber threat analysis
using system audit records,” in Symposium on
Security and Privacy (S&P’22). IEEE, 2022.

[8] S. Wang, Z. Wang, T. Zhou, X. Yin, D. Han,
H. Zhang, H. Sun, X. Shi, and J. Yang, “Threatrace:
Detecting and tracing host-based threats in node
level through provenance graph learning,” IEEE
Transactions on Information Forensics and
Security, 2022.

[9] P. Chen, L. Desmet, and C. Huygens, “A study
on advanced persistent threats,” in International
Conference on Communications and Multimedia
Security (CMS’14). Springer, 2014.

[10] T. Pasquier, X. Han, M. Goldstein, T. Moyer,
D. M. Eyers, M. I. Seltzer, and J. Bacon, “Practical
whole-system provenance capture,” in Symposium
on Cloud Computing (SoCC’17). ACM, 2017,
pp. 405–418.

[11] Google Project Zero, “The More You Know,
The More You Know You Don’t Know,” 2022,
https://googleprojectzero.blogspot.com/2022/04/
the-more-you-know-more-you-know-you.html.

[12] M. Sohm, “Research on various tech-
niques to bypass default falco ruleset,”
https://github.com/blackberry/Falco-bypasses.

[13] “Container runtime security bypasses on falco,”
https://www.antitree.com/2019/09/container-
runtime-security-bypasses-on-falco/.

[14] X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. W.
Mickens, M. I. Seltzer, and H. Chen, “SIGL:
securing software installations through deep
graph learning,” in Security Symposium (Sec’21).
USENIX, 2021.

[15] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and
D. Meng, “Log2vec: A heterogeneous graph em-
bedding based approach for detecting cyber threats
within enterprise,” in Conference on Computer and
Communications Security (CCS’19). ACM, 2019.

[16] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog:
Anomaly detection and diagnosis from system
logs through deep learning,” in Conference on
Computer and Communications Security (CCS’17).
ACM, 2017.

[17] S. M. Milajerdi, B. Eshete, R. Gjomemo, and
V. N. Venkatakrishnan, “POIROT: Aligning Attack
Behavior with Kernel Audit Records for Cyber
Threat Hunting,” in Conference on Computer and
Communications Security (CCS’19). ACM, 2019.

[18] S. T. King and P. M. Chen, “Backtracking
intrusions,” in Symposium on Operating Systems
Principles (SOSP’03). ACM, 2003.

[19] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee,
Z. Li, and A. Bates, “Nodoze: Combatting
threat alert fatigue with automated provenance
triage,” in Network and Distributed System Security
Symposium (NDSS’19). The Internet Society, 2019.

[20] X. Han, T. Pasquier, T. Ranjan, M. Goldstein,
and M. I. Seltzer, “Frappuccino: Fault-detection
through runtime analysis of provenance,” in
Workshop on Hot Topics in Cloud Computing

https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://github.com/blackberry/Falco-bypasses
https://www.antitree.com/2019/09/container-runtime-security-bypasses-on-falco/
https://www.antitree.com/2019/09/container-runtime-security-bypasses-on-falco/

(HotCloud’17). USENIX, 2017.
[21] E. Manzoor, S. Momeni, V. Venkatakrishnan,

and L. Akoglu, “Fast memory-efficient anomaly
detection in streaming heterogeneous graphs,”
International Conference on Knowledge Discovery
and Data Mining (KDD’16), 2016.

[22] W. U. Hassan, A. Bates, and D. Marino, “Tactical
Provenance Analysis for Endpoint Detection and
Response Systems,” in Symposium on Security
and Privacy (S&P’20). IEEE, 2020.

[23] D. J. Pohly, S. McLaughlin, P. McDaniel, and
K. Butler, “Hi-fi: collecting high-fidelity whole-
system provenance,” in Annual Computer Security
Applications Conference (ACSAC’12), 2012.

[24] A. D. Keromytis, “Transparent Computing
Engagement 3 Data Release,” 2018,
https://github.com/darpa-i2o/Transparent-
Computing/blob/master/README-E3.md.

[25] Mandiant, “APT1: Exposing One of
China’s Cyber Espionage Units,” 2013,
https://www.mandiant.com/resources/apt1-
exposing-one-of-chinas-cyber-espionage-units.

[26] M. Fazzini, “Tagging and tracking of multi-level
host events for transparent computing,” 2017,
https://smartech.gatech.edu/handle/1853/56510.

[27] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu,
K. Zou, J. Rhee, Z. Chen, W. Cheng, C. A. Gunter,
and H. Chen, “You Are What You Do: Hunting
Stealthy Malware via Data Provenance Analysis,”
in Network and Distributed System Security
Symposium (NDSS’20). The Internet Society, 2020.

[28] A. Tsymbal, “The problem of concept drift:
definitions and related work,” Computer Science
Department, Trinity College Dublin, 2004.

[29] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer,
“Trustworthy Whole-System Provenance for the
Linux Kernel,” in Security Symposium. USENIX,
2015.

[30] R. Paccagnella, P. Datta, W. U. Hassan, A. Bates,
C. W. Fletcher, A. Miller, and D. Tian, “Custos:
Practical Tamper-Evident Auditing of Operating
Systems Using Trusted Execution,” in Network
and Distributed System Security Symposium. The
Internet Society, 2020.

[31] R. Paccagnella, K. Liao, D. Tian, and A. Bates,
“Logging to the Danger Zone: Race Condition
Attacks and Defenses on System Audit
Frameworks,” in Conference on Computer
and Communications (CCS’20). ACM, 2020.

[32] P. Li, Y. Yang, M. Pagnucco, and Y. Song, “Explain-
ability in graph neural networks: An experimental

survey,” CoRR, vol. abs/2203.09258, 2022.
[33] Z. Zhang, P. Qi, and W. Wang, “Dynamic

malware analysis with feature engineering and
feature learning,” AAAI Conference on Artificial
Intelligence, 2021.

[34] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev,
A. Sethi, P. Forsyth, and P. Poupart, “Representation
Learning for Dynamic Graphs: A Survey,” Journal
of Machine Learning Research, 2020.

[35] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard,
F. Monti, and M. Bronstein, “Temporal graph
networks for deep learning on dynamic graphs,”
International Conference on Machine Learning
(ICML’20), 2020.

[36] Y. Shi, Z. Huang, W. Wang, H. Zhong, S. Feng,
and Y. Sun, “Masked label prediction: Unified
massage passing model for semi-supervised
classification,” in IJCAI, 2021.

[37] T. F. J. Pasquier, X. Han, T. Moyer, A. Bates,
O. Hermant, D. M. Eyers, J. Bacon, and M. I.
Seltzer, “Runtime analysis of whole-system
provenance,” in Conference on Computer and
Communications Security (CCS’18). ACM, 2018.

[38] K. Cho, B. van Merrienboer, Çaglar Gülçehre,
D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations
using rnn encoder–decoder for statistical machine
translation,” in EMNLP, 2014.

[39] K. Church and W. Gale, “Inverse document
frequency (idf): A measure of deviations from
poisson,” in Natural language processing using
very large corpora. Springer, 1999.

[40] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu,
J. Rhee, and P. Mittal, “Towards a timely causality
analysis for enterprise security,” in Network and
Distributed System Security Symposium. The
Internet Society, 2018.

[41] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao,
F. Xu, H. Wang, and G. Jiang, “High fidelity
data reduction for big data security dependency
analyses,” in Conference on Computer and
Communications Security (CCS’16). ACM, 2016.

[42] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang,
Z. Zhang, L. Si, X. Zhang, and D. Xu, “HERCULE:
attack story reconstruction via community discovery
on correlated log graph,” in Annual Conference
on Computer Security Applications. ACM, 2016.

[43] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, “Fast unfolding of communities in
large networks,” Journal of Statistical Mechanics:
Theory and Experiment, 2008.

https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://www.mandiant.com/resources/apt1-exposing-one-of-chinas-cyber-espionage-units
https://www.mandiant.com/resources/apt1-exposing-one-of-chinas-cyber-espionage-units
https://smartech.gatech.edu/handle/1853/56510

[44] L. Akoglu, H. Tong, and D. Koutra, “Graph based
anomaly detection and description: a survey,” Data
Mining and Knowledge Discovery, 2015.

[45] S. T. King, Z. M. Mao, D. G. Lucchetti, and
P. M. Chen, “Enriching intrusion alerts through
multi-host causality,” in Network and Distributed
System Security Symposium (NDSS’05). The
Internet Society, 2005.

[46] “scikit-learn: machine learning in Python,” 2021,
https://scikit-learn.org/.

[47] M. Fey and J. E. Lenssen, “Fast graph
representation learning with PyTorch Geometric,”
in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[48] A. Hagberg, P. Swart, and D. S Chult, “Exploring
network structure, dynamics, and function using
networkx,” Los Alamos National Lab., Tech. Rep.,
2008.

[49] J. Ellson, E. Gansner, L. Koutsofios, S. C. North,
and G. Woodhull, “Graphviz—open source graph
drawing tools,” in International Symposium on
Graph Drawing. Springer, 2001.

[50] E. Manzoor, S. Momeni, V. Venkatakrishnan, and
L. Akoglu, “StreamSpot Code and Data,” 2016,
https://sbustreamspot.github.io/.

[51] J. Torrey, “Transparent Computing
Engagement 5 Data Release,” 2020, https:
//github.com/darpa-i2o/Transparent-Computing.

[52] M. van Opstal and W. Arbaugh, “Operationally
Transparent Cyber (OpTC) Data Release,” 2019,
https://github.com/FiveDirections/OpTC-data.

[53] H. Yu, A. Li, and R. Jiang, “Needle in a haystack:
Attack detection from large-scale system audit,”
International Conference on Communication
Technology (ICCT’19), 2019.

[54] G. Berrada and J. Cheney, “Aggregating
unsupervised provenance anomaly detectors,” in
International Workshop on Theory and Practice
of Provenance (TaPP’19). USENIX, 2019.

[55] G. Berrada, S. Benabderrahmane, J. Cheney,
W. Maxwell, H. Mookherjee, A. Theriault,
and R. Wright, “A baseline for unsupervised
advanced persistent threat detection in system-level
provenance,” Future Generation of Computer
Systems, 2020.

[56] Y. Xie, Y. Wu, D. Feng, and D. D. E. Long, “P-
Gaussian: Provenance-Based Gaussian Distribution
for Detecting Intrusion Behavior Variants Using
High Efficient and Real Time Memory Databases,”
IEEE Transactions on Dependable and Secure
Computing, 2021.

[57] M. N. Hossain, S. Sheikhi, and R. C. Sekar, “Com-
bating dependence explosion in forensic analysis
using alternative tag propagation semantics,” Sym-
posium on Security and Privacy (S&P’20), 2020.

[58] B. Jacob, P. Larson, B. Leitao, and S. Da Silva,
“Systemtap: instrumenting the linux kernel for
analyzing performance and functional problems,”
IBM Redbook, vol. 116, 2008.

[59] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke,
F. Pierazzi, C. Wressnegger, L. Cavallaro, and
K. Rieck, “Dos and don’ts of machine learning
in computer security,” in Security Symposium
(USENIX Sec’22). USENIX, 2022.

[60] D. Zügner, A. Akbarnejad, and S. Günnemann,
“Adversarial attacks on neural networks for graph
data,” in International Conference on Knowledge
Discovery & Data Mining (KDD’18). ACM, 2018.

[61] D. Zügner and S. Günnemann, “Adversarial
attacks on graph neural networks via meta
learning,” in International Conference on Learning
Representations, 2019.

[62] X. Zhang and M. Zitnik, “GNNGuard: Defending
Graph Neural Networks against Adversarial
Attacks,” in Conference on Neural Information
Processing Systems (NeurIPS’20), 2020.

[63] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B.
Celik, X. Zhang, and D. Xu, “Atlas: A sequence-
based learning approach for attack investigation,”
in Security Symposium (Sec’21). USENIX, 2021.

[64] M. N. Hossain, S. M. Milajerdi, J. Wang,
B. Eshete, R. Gjomemo, R. Sekar, S. D. Stoller,
and V. N. Venkatakrishnan, “SLEUTH: Real-time
Attack Scenario Reconstruction from COTS Audit
Data,” in Security Symposium, (USENIX Sec’17).
USENIX, 2017.

[65] C. Xiong, T. Zhu, W. Dong, L. Ruan, R. Yang,
Y. Cheng, Y. Chen, S. Cheng, and X. Chen, “Conan:
A Practical Real-Time APT Detection System With
High Accuracy and Efficiency,” IEEE Transactions
on Dependable and Secure Computing, 2022.

[66] A. Grover and J. Leskovec, “node2vec: Scalable
Feature Learning for Networks,” in International
Conference on Knowledge Discovery and Data
Mining (KDD’16). ACM, 2016.

[67] D. Han, Z. Wang, W. Chen, Y. Zhong, S. Wang,
H. Zhang, J. Yang, X. Shi, and X. Yin, “DeepAID:
Interpreting and Improving Deep Learning-based
Anomaly Detection in Security Applications,” in
Conference on Computer and Communications
Security (CCS’21). ACM, 2021.

[68] Z. Cheng, Q. Lv, J. Liang, Y. Wang, D. Sun,

https://scikit-learn.org/
https://sbustreamspot.github.io/
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/FiveDirections/OpTC-data

T. Pasquier, and X. Han, “KAIROS: Practical
Intrusion Detection and Investigation using Whole-
system Provenance (Supplementary Material),”
2023, https://github.com/ProvenanceAnalytics/
kairos/blob/main/supplementary-material.pdf.

[69] B. Wang and N. Z. Gong, “Attacking graph-based
classification via manipulating the graph structure,”
in Conference on Computer and Communications
Security (CCS’19), 2019.

[70] D. A. Wagner and P. Soto, “Mimicry attacks
on host-based intrusion detection systems,” in
Conference on Computer and Communications
Security (CCS’02). ACM, 2002, pp. 255–264.

[71] A. Goyal, X. Han, G. Wang, and A. Bates,
“Sometimes, you aren’t what you do: Mimicry
attacks against provenance graph host intrusion
detection systems,” in Network and Distributed
System Security Symposium, (NDSS’23). The
Internet Society, 2023.

[72] M. A. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink,
N. Michael, S. Gaur, A. Bates, and W. U. Hassan,
“Sok: History is a vast early warning system:
Auditing the provenance of system intrusions,” in
Symposium on Security and Privacy. IEEE, 2022.

[73] F. Yang, J. Xu, C. Xiong, Z. Li, and K. Zhang,
“Prographer: An anomaly detection system based
on provenance graph embedding,” 2023.

[74] Z. Xu, P. Fang, C. Liu, X. Xiao, Y. Wen, and
D. Meng, “Depcomm: Graph summarization on
system audit logs for attack investigation,” in 2022
IEEE Symposium on Security and Privacy (SP).
IEEE, 2022, pp. 540–557.

[75] M. N. Hossain, J. Wang, O. Weisse, R. Sekar,
D. Genkin, B. He, S. D. Stoller, G. Fang,
F. Piessens, E. Downing et al., “Dependence-
Preserving Data Compaction for Scalable Forensic
Analysis,” in Security Symposium (USENIX
Sec’18). USENIX, 2018.

Appendix A.
DARPA Dataset Details

Table 11 summarizes the attack scenarios in the
DAPRA datasets. We describe each attack scenario in
detail in a separate document [68]. Table 12 summarizes
the specific data we use from the datasets for training, val-
idation, and detection. Similar to prior work [7], we also
perform noise reduction and define an allow-list of trusted
data objects that are removed from the causal analysis.

Appendix B.
Hyperparameter Impact on Performance

Fig. 7 shows AUC results for all DARPA datasets with
varying hyperparameter values. Fig. 8 and Fig. 9 show
the corresponding memory and computational overhead.
Fig. 10 shows the average time window execution time.

Appendix C.
Attack Reconstruction Examples

Due to space constraints, we provide a subset of
candidate graph examples from DARPA datasets in
our experiment. We refer interested readers to the
supplementary material [68] for full experimental results.
Similarly, we include only benign summary graph
examples of the corresponding datasets in §D.
E3-CADETS (Fig. 11). The attacker
(81.49.200.166) connects to a vulnerable
Nginx server and obtains a shell. Through the
shell, the attacker successfully downloads a malicious
payload to /tmp/vUgefal and executes the payload
with root privileges. The elevated process vUgefal
attempts to move laterally to 154.145.113.18
and 61.167.39.128. However, only the attempt at
infecting 61.167.39.128 is successful. vUgefal
further plans to inject malicious payload to the sshd

Table 11. OVERVIEW OF APT SCENARIOS IN DARPA DATASETS.

Dataset Duration Platform Attack Surface
E3-THEIA 02d00h12m Ubuntu 12.04 x64 Firefox
E3-CADETS 00d00h55m FreeBSD Nginx
E3-ClearScope 00d01h08m Android 6.0.1 Firefox
E5-THEIA 00d00h21m Ubuntu 12.04 x64 Firefox
E5-CADETS 01d01h14m FreeBSD 13 Nginx
E5-ClearScope 02d01h02m Android 8 Appstarter APK
OpTC 02d03h00m Windows PowerShell

Table 12. DARPA DATA USED FOR TRAINING, VALIDATION,
AND TEST. THE BOLD DAYS ARE ATTACK DAYS IN WHICH BOTH
BENIGN AND ATTACK TIME WINDOWS EXIST. THE REMAINING
DAYS ARE BENIGN DAYS WITH ONLY BENIGN TIME WINDOWS.

Datasets Training Data
(yyyy-mm-dd)

Validation Data
(yyyy-mm-dd)

Test Data
(yyyy-mm-dd)

E3-THEIA 2018-04-03/04/05 2018-04-09 2018-04-10/12
2018-04-11

E3-CADETS 2018-04-02/03/04 2018-04-05 2018-04-06
2018-04-07

E3-ClearScope 2018-04-04/05/06 2018-04-07 2018-04-10
2018-04-11

E5-THEIA 2019-05-08/09 2019-05-11 2019-05-14
2019-05-15

E5-CADETS 2019-05-08/09/11 2019-05-12 2019-05-15
2019-05-16/17

E5-ClearScope 2019-05-08/09/11 2019-05-12 2019-05-14
2019-05-15/17

OpTC 2019-09-22 2019-09-23 2019-09-23/24/25

https://github.com/ProvenanceAnalytics/kairos/blob/main/supplementary-material.pdf
https://github.com/ProvenanceAnalytics/kairos/blob/main/supplementary-material.pdf

(a) |Φ| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 7. AUC on all DARPA datasets with varying hyperparameter values.

(a) |Φ| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 8. Average memory usage on all DARPA datasets with varying hyperparameter values.

(a) |Φ| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 9. 90th percentile CPU utilization on all DARPA datasets with varying hyperparameter values.

(a) |Φ| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 10. Average execution time on all DARPA datasets with varying hyperparameter values.

Figure 11. A summary graph that describes attack activity in DARPA’s E3-CADETS dataset, as automatically generated by KAIROS.

process. To do so, the attacker downloads the payload to
/var/log/devc, but the attempted process injection
fails.
E5-ClearScope (Fig. 12). A user accidentally
installs a malicious appstarter APK
de.belu.appstarter, which loads an attack
module called busybox. This module gives the
attacker control from 77.138.117.150. The attacker
then installs the driver msm_g711tlaw into the victim
host for privilege escalation. The attack exfiltrates cal-

llog.db, calendar.db, and mmssms.db and
takes a screenshot. Two days later, the attacker exploits
appstarter again to try to connect to the C&C
server (128.55.12.233) but failed. The ground truth
also describes some malicious activity of attack payloads
called lockwatch and mozilla. Upon close
inspection, we discover that the provenance data related
to the malicious activity is corrupted. We remove the
corrupted data and omit the malicious activity in Fig. 12.
OpTC Day 1 (Fig. 13). The attacker uses a C&C

Figure 12. A summary graph that describes attack activity in DARPA’s E5-ClearScope dataset, as automatically generated by KAIROS.

Figure 13. A summary graph that describes attack activity in DARPA’s OpTC dataset in day 1, as automatically generated by KAIROS.

server (132.197.158.98) to connect to the victim
host and executes a powershell script runme.bat.
The attacker then injects the process lsass to collect
the victim’s credential and host information. The
attacker also scans the network (e.g., using ping
and smb) and uses wmiprvse to move laterally to
a host at 142.20.57.147. Eventually, the attacker
moves to a host at 142.20.58.149 and runs more
powershell scripts *.ps1 to collect information.

Appendix D.
Benign Summary Graph Examples

Figure 14. A benign summary graph in DARPA’s E3-CADETS
dataset.

E3-CADETS (Fig. 14). wget is a Linux utility used
to download files from the Internet. It might connect to
any external IP or URL. To determine whether wget’s
behavior is related to attack activity, sysadmins might

either check whether any connected IP is in a blocklist
or confirm with the user the identities of the files they
download. Any file not recognized by the user might
be downloaded by the attacker through a C&C server.

Figure 15. A benign summary graph in DARPA’s E5-ClearScope.

E5-ClearScope (Fig. 15). defcontainer is a system
process associated with APK file installation. Sysadmins
might confirm with the user the identities of the APK
files they install. Sysadmins should further inspect
the installed APK files to ensure that they are from
legitimate vendors.

Figure 16. A benign summary graph in DARPA’s OpTC.

OpTC (Fig. 16). Installagent is Microsoft
Windows Store’s update agent, which uses the
system services System, backgroundTaskHost,

and svchost. Sysadmins need to investigate
Installagent only when suspicious files (e.g., files

not in the system path) appear in its activity.

	Introduction
	Background & Motivation
	System-level Data Provenance
	A Motivating Example
	Scenario (Fig. 1)
	Challenges
	Kairos' Result

	Threat Model
	Kairos Framework
	Graph Construction and Representation
	Graph Learning
	Anomaly Detection
	Identifying Suspicious Nodes
	Constructing Queues of Time Windows
	Detecting Anomalous Queues

	Anomaly Investigation

	Evaluation
	Datasets
	Manzoor et al. Dataset
	DARPA Datasets

	Detection Performance
	Comparison Study
	Unicorn
	ThreaTrace

	Hyperparameter Impact on Performance
	Attack Reconstruction
	End-to-end Performance

	Discussion
	Related Work
	Conclusion
	Appendix A: DARPA Dataset Details
	Appendix B: Hyperparameter Impact on Performance
	Appendix C: Attack Reconstruction Examples
	Appendix D: Benign Summary Graph Examples

