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Abstract
As cyber-threats grow in scale and sophistication, intrusion detec-
tion systems that incorporate system provenance and deep learn-
ing have emerged as a promising direction for detecting advanced
persistent threats (APTs). We endeavor to reproduce the experi-
mental results from eight such systems published over the past
four years in top-tier research venues. We encountered numerous
challenges that obstruct reproducibility, including incomplete or
non-functional source code releases, missing documentation, un-
availability of datasets or detailed preprocessing steps, and unclear
or inconsistent descriptions of experimental procedures. We detail
and categorize these challenges to demonstrate the obstacles re-
searchers may encounter when reproducing studies in this domain.
Our findings highlight gaps in reaching the ideals of open science
in this area of intrusion detection research.

1 Introduction
The need for advanced and adaptable intrusion detection systems
has grown increasingly urgent in response to escalating threats
such as probing, infiltration, lateral movement, data exfiltration,
and backdoor insertion by nation-state and economically motivated
actors. Stealthy attacks that unfold over extended periods within
complex and high-throughput systems present a particular chal-
lenge. Detecting such advanced persistent threats (APTs) was a
central focus of DARPA’s Transparent Computing (TC) program. In
the five years since the program’s conclusion, the threat landscape
has further evolved, with fileless malware increasingly supplanted
by sophisticated living-off-the-land (LoTL) techniques [8, 55].

To enhance system observability, DARPA’s Transparent Comput-
ing (TC) program [15] demonstrated the value of elevating low-level
audit event streams into intermediate-level provenance graphs [34].
These graphs explicitly capture causal relationships among tem-
porally distant yet logically connected entities, such as users, pro-
cesses, and system artifacts. This approach led to the emergence
of a new class of provenance-based intrusion detection systems
(PIDS), which has since gained considerable traction in the research
community (see dedicated surveys of the field [30, 79]). In parallel,
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industrial deployments of PIDS have shown markedly improved
performance over conventional endpoint detection and response
(EDR) systems [18].

Recent work has explored the use of deep learning techniques to
manage the substantial volumes of graph-structured data generated
whenmonitoring activity across one or more hosts in a network [10,
25, 77]. Although heuristic in nature, these methods offer attractive
scalability by eliminating the significant manual effort previously
required to explicitly specify correct system behaviors or to formally
encode complex security properties. While such specifications were
possible before the advent of deep learning–based approaches, they
demanded substantial domain expertise and manual effort, limiting
their practical scalability [26].

Over the past three years, top-tier security conferences have fea-
tured several systems that leverage deep learning over provenance
graphs to detect intrusions [5, 10, 21, 25, 35, 70, 73, 77]. The first gen-
eration of these systems was designed primarily for offline forensic
analysis—that is, they assume full availability of provenance data
prior to the start of analysis. For example, SIGL [25] operates on
the software installation graph generated after a package manager
installs a new application; Atlas [5] begins analyzing logs (from
which provenance is inferred) only after a compromise has been
detected; ShadeWatcher [77] relies on computationally intensive
backward lineage queries during a preprocessing phase, which hin-
ders its ability to process provenance data as it is produced. In
scenarios where detection latency is high, the system under attack
may suffer confidentiality, integrity, or availability losses before a
response can be initiated.

Second-generation systems aim to support online intrusion de-
tection, but many face significant scalability challenges. Systems
such as ThreaTrace [73], Kairos [10], and R-CAID [21] maintain
in-memory neural embeddings that grow proportionally with the
size of the provenance graph, which itself increases with the dura-
tion of system monitoring. R-CAID [21], in particular, also relies on
lineage queries, similar to earlier offline approaches. Other designs
achieve scalability by introducing abstractions that reduce robust-
ness, making them susceptible to adversarial manipulation [20, 53].
For instance, EdgeTorrent [35] constructs sketches over fixed tem-
poral windows, limiting detection granularity to the size of those
windows. Flash [70] reuses existing embeddings when new ele-
ments differ only slightly from prior ones, potentially allowing a
stealthy adversary’s subtle deviations to evade detection.
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Table 1: Salient aspects of the Provenance Graph Construc-
tion stage.

Salient Aspect System

Stage is Omitted AirTag
Memory Cache System ThreaTrace, NodLink
Batch Log Processing ThreaTrace, NodLink, Flash, Kairos

Table 2: Salient aspects of the Graph Representation and
Learning stage.

Salient Aspect System

Non-GNN Based Atlas, AirTag, NodLink

G
N
N
-B
as
ed Knowledge Graph ShadeWatcher

Multi-Model Framework ThreaTrace

Temporal Graph Network Kairos

Selective Graph Traversal Flash

Masked Graph Learning Magic

A growing demand for effective solutions in the field of Prove-
nance based Intrusion Detection using Deep Learning (PIDDL)
underscores the importance of continued research in this area.
Progress depends not only on innovation but also on the ability to
meaningfully compare new approaches with prior work. It makes
the reproducibility of existing results essential. To this end, we
undertook a systematic effort to reproduce the findings of eight
recent and influential PIDDL studies published at top-tier security
conferences, workshops, and journals. Our investigation reveals
significant challenges, including inconsistent levels of transparency
and support from original authors, as well as substantial variation
in implementation details, platforms, and datasets.

Contributions
• We reproduce the experimental results of eight PIDDL systems

and quantify the discrepancies between reported and reproduced
outcomes.

• We identify domain-specific properties relevant to assessing re-
producibility in PIDDL research.

• We categorize the primary challenges that hinder reproducibility
across these systems.

• We highlight instances where engagement with original authors
facilitated the resolution of reproducibility issues.

2 Typical PIDDL Workflow
Provenance-based intrusion detection systems that incorporate
deep learning typically follow a common pipeline comprising three
key stages: (1) provenance graph construction, (2) graph representa-
tion and learning, and (3) detection. Figure 1 illustrates this pipeline,
while Tables 1, 2, and 3 highlight how specific systems diverge from
this typical workflow.

Table 3: Salient aspects of the Detection stage.

Salient Aspect System

Online Detection Capability ThreaTrace, NodLink,
Flash, Kairos

Captures Long-Running Attacks NodLink, Kairos
Model Adaptation Feature ShadeWatcher, Magic
Distinctive Graph Generation NodLink, Kairos
Requires Attack Symptom Atlas

Provenance Graph Construction. Systems begin by ingesting
provenance data and constructing corresponding graphs. The in-
put format varies depending on the host operating system and
the provenance capture tool employed [9]. These graphs serve to
normalize heterogeneous input data into a unified representation,
allowing subsequent components to operate over a consistent struc-
ture. To build the graph, systems map provenance events to kernel
objects and their interactions. The number of objects and interac-
tions represented varies across systems, directly influencing the
graph’s size and memory footprint. As the graph grows, it may in-
cur higher storage costs but also offers richer structural complexity,
which can improve downstream feature discrimination. By struc-
turing input data as provenance graphs, these systems effectively
capture the causal relationships among kernel-level entities.
Graph Representation and Learning. Once provenance graphs
are constructed, PIDDL systems transform them into representa-
tions suitable for machine learning–based anomaly detection. Deep
learning methods, particularly graph neural networks (GNNs), are
commonly used to generate neural embeddings that capture the
structural and contextual relationships among nodes and edges.
These embeddings enable models to learn complex patterns inher-
ent in system behavior. Additionally, some systems incorporate
techniques such as Word2Vec [52] to embed node and edge at-
tributes, enriching the representation with semantic information
that enhances the model’s ability to discriminate between benign
and anomalous behavior.
Detection. In the final stage, the learned embeddings are used
to identify malicious activity. Detection mechanisms vary across
systems, depending on the desired level of granularity. A common
approach is anomaly-based detection, wherein models are trained
on patterns of benign behavior, and deviations from these learned
patterns are flagged as potential anomalies.

3 Methodology
We initially identified 14 representative intrusion detection systems
that leverage provenance information and incorporate deep learn-
ing techniques in their pipelines, focusing on work published since
2020. These systems appeared in top-tier security venues, including
USENIX Security [5, 17, 25, 31, 75] (5/14), NDSS [40, 72, 76] (3/14),
IEEE S&P [10, 21, 70, 77] (4/14), ACM RAID [35] (1/14), and IEEE
TIFS [73] (1/14). From these, we selected eight systems [5, 10, 17,
31, 40, 70, 73, 77] with publicly available open-source repositories,
excluding those lacking accessible code. We assigned the selected
systems to three undergraduate students (referred to as evaluators)
and three graduate students (referred to as editors). This division
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Figure 1: Three key stages in a PIDDL pipeline

Table 4: Summary of findings. *[pre-trained, scratch models]/total datasets; ✗= no pre-trained models provided. **✓✓= Both
train/test and CPU/memory reported; ✓= Only test/memory reported; ✗= Neither reported. †Atlas and NodLink evaluate each
dataset at two granularities. AirTag evaluates each host in an MDataset separately. Flash evaluates three attacks in the OpTC
dataset separately. We only add a count if percentage differences are applicable to all sub-evaluations of a dataset. ‡AirTag’s use
of DepImpact datasets is not included in these counts.

Property ShadeWatcher Atlas† ThreaTrace AirTag†‡ NodLink† Flash† Kairos Magic
End-to-End Execution ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Exact Result Reproducibility* [✗,0]/2 [0,0]/10 [0,0]/11 [0,0]/16 [✗,0]/6 [1,0]/8 [3,2]/8 [2,0]/5
Minor Result Difference (<2%)* [✗,0]/2 [2,3]/10 [1,2]/11 [8,2]/16 [✗,0]/6 [6,1]/8 [3,3]/8 [4,3]/5
Data Availability 1/2 10/10 11/11 16/16 4/6 8/8 8/8 5/5
Label Availability 0/2 10/10 7/11 16/16 1/6 7/8 7/8 5/5
Ready-to-run Scripts 0/2 0/10 6/11 10/16 0/6 7/8 7/8 4/5
Trained Model Presence 0/2 10/10 6/11 16/16 0/6 7/8 8/8 5/5
CPU/Mem Overhead Discussion** ✓✓ ✗ ✓✓ ✗ ✗ ✓✓ ✓✓ ✓
Train/Test Times Presence** ✓✓ ✓✓ ✓ ✓ ✓ ✓ ✓ ✓✓

of roles was intended to ensure an unbiased evaluation process:
evaluators independently attempted to reproduce results without
prior assumptions, while editors cross-checked their findings and
provided methodological guidance.

3.1 Evaluators & Editors
Our methodology consists of two stages. In the first stage, eval-
uators independently attempt to reproduce the results reported
in the original papers, documenting any technical issues encoun-
tered, such as code errors or missing dependencies. These issues
are then reported to the editors. In the second stage, editors triage
the reported problems, identifying which issues to escalate to the
original authors via email or GitHub and proposing fixes for re-
solvable problems (e.g., configuration adjustments). Authors are
contacted (by either editors or evaluators) to clarify ambiguities and
minimize the risk of false-negative conclusions. When contacted
via email, all the authors of the paper were included. Following
iterative re-evaluation, editors assess whether the discrepancies
between the reproduced and reported results have been accurately
identified and appropriately addressed.

3.2 Evaluation Properties
To systematically assess the reproducibility of the eight selected
systems, we define a set of key properties (Table 4) that encom-
pass critical aspects of software execution, data availability, and
experimental validation.
End-to-End Execution.We check whether all parts of the system,
from log ingestion through to detection, are included, can be built,
and run successfully.
Exact Result Reproducibility. All systems include a prototype
evaluated on one or more datasets to assess performance. This
property captures the extent to which the reported evaluation re-
sults are exactly reproducible. Specifically, we check whether the
reproduced outcomes match the figures presented in the paper
across all reported metrics. When a dataset is evaluated at multiple
levels of granularity, reproducibility requires that results match at
each level. In cases where multiple models are used to evaluate the
same dataset, we consider the results reproducible if the reproduced
outcomes match those reported for at least one of the models. For
example, Flash is deemed reproducible if the results align when
using its GNN for downstream classification, even if they differ
from those obtained using the XGBoost model, assuming both are
reported in the paper.
Minor Result Difference. This property relaxes the criteria for ex-
act result reproducibility by allowing small deviations. Specifically,
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it verifies that the reproduced F1 scores differ from the reported
values by less than 2%.
Data Availability. This property records the number of datasets
used in the paper that are publicly accessible.
Label Availability. For each publicly available dataset, we assess
whether the corresponding ground truth labels are also publicly
accessible. It is important to note that detection granularity varies
across systems [32]. Therefore, a general ground truth (e.g., that
provided with the DARPA TC E3 datasets) may not be sufficient to
consider a dataset as having usable ground truth labels.
Ready-to-Run Scripts. This property evaluates how many dataset
evaluations can be executed with minimal effort from the evalu-
ator. In cases where both pre-trained models and models trained
from scratch are evaluated, a dataset is considered successful under
this criterion if either approach runs without requiring manual
intervention.
TrainedModelAvailability.To support reproducibility, researchers
may release trainedmodels for the datasets used in their evaluations.
This property records how many of those datasets have correspond-
ing trained models publicly available.
CPU and Memory Overhead Discussion. This property evalu-
ates whether the paper discusses memory consumption and CPU
usage under varying system hyperparameters. Such analysis is
critical for assessing diverse deployment environments feasibility.
Training and Testing Time Reporting. This property assesses
whether the paper reports model training and testing times for at
least one dataset used in the evaluation. Providing this informa-
tion supports fair performance comparisons with future systems
and helps set realistic expectations for researchers attempting to
reproduce the results.

4 System Case Studies
We present detailed case studies of our efforts to reproduce each of
the eight systems, highlighting the primary challenges encountered
during the process. These challenges are summarized in Table 5. We
report the key quantitative discrepancies observed, comparing the
published results against those obtained using the best-performing
model from our reproduction (either the available pre-trainedmodel
or a model trained from scratch). We reproduce evaluations on all
available datasets with one exception: we exclude AirTag’s eval-
uation on the DepImpact datasets [19], as this forms part of an
ablation study exploring model behavior under varying conditions,
rather than constituting the core evaluation of the system.

4.1 Shadewatcher
ShadeWatcher [77] introduces a novel approach to cyber threat
detection by recasting it as a recommendation problem. It predicts
the likelihood of interaction between kernel objects, akin to infer-
ring user-item interactions in traditional recommendation systems.
It adopts Watson’s [76] strategy to construct behavior subgraphs
rooted at data objects, transforms them into bipartite graphs rep-
resenting system-entity interactions, and integrates these with a
noise-reduced provenance graph to form a knowledge graph (KG).
An unsupervised GNN [37] is then applied to the KG to learn both
direct and semantic relationships between system entities, enabling
the detection of anomalous entities based on unlikely interactions.

Evaluation Datasets. 2 datasets: a closed-source custom dataset
simulating six different cyber attacks, and the TRACE team’s open-
source DARPA TC Engagement 3 dataset [14].

Evaluator Experience
Missing Code. The ShadeWatcher codebase lacks the implemen-
tation of the interaction extraction component, including the con-
struction of bipartite graphs, which constitutes a core contribution
of the paper. Manual inspection confirms that this functionality is
entirely absent. As reported by Kairos [10], the authors have stated
that this component is proprietary. After parsing the provenance
graph, the parser fails to generate any of the output files required by
the recommendationmodel, such as the knowledge graph, extracted
interactions, or entity metadata. Without these artifacts, the model
cannot be trained or evaluated, precluding an end-to-end execution
of ShadeWatcher. Although the model can be run using example
text files provided in the repository, its evaluation logic assumes
all inputs are benign and therefore only reports true negatives and
false positives.
Investigating Workarounds for the Missing Code. Because
ShadeWatcher’s interaction extraction component relies on Wat-
son’s strategy—and Watson is not open source—the evaluator was
unable to reimplement the missing functionality. However, a frame-
work called ProvNinja [53] includes an evaluation of ShadeWatcher.
To understand how its authors conducted this evaluation, we man-
ually inspected their public fork of the ShadeWatcher codebase.
While this fork included modifications to enable file output re-
quired by the recommendation model, it did not reimplement the
missing interaction extraction logic. Instead, it approximated in-
teractions by treating direct edges between kernel objects in the
provenance graph as interactions—an approach that deviates from
the methodology described in the original ShadeWatcher paper.
Although the fork remained accessible through late 2024, it has
since been removed from its original GitHub link. We contacted
the authors to request access but did not receive a response.

Reproduction Results
ShadeWatcher’s codebase lacks the implementation of the inter-

action extraction component, including the bi-partite graph cre-
ation, which is essential to the system. This prevents any end-to-end
execution of ShadeWatcher.

4.2 Atlas
Atlas [5] introduces a framework for reconstructing complete “at-
tack stories” (temporal sequences of attack steps—from audit logs)
starting from a known attack symptom system-entity node. The
core idea is to convert a noise-reduced provenance graph into lem-
matized sequences, each representing a temporally ordered set of
events within an entity’s neighborhood. To construct a balanced
dataset, Atlas under-samples benign sequences and over-samples
attack sequences. These sequences are then mapped to a general-
ized vocabulary, vectorized, and used to train an LSTM model to
distinguish between attack and non-attack patterns. During inves-
tigation, Atlas classifies each sequence as benign or malicious and
uses the flagged sequences to identify suspicious system entities
and events.
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Table 5: Key Reproducibility Challenges. A ✗indicates that the issue is present in the corresponding system. *We add a cross here
if the issue could not be resolved even after trying to trace the file names from the code. **Deployment-environment-specific
code or debugging code left in.

Reproducibility Challenge ShadeWatcher Atlas ThreaTrace AirTag NodLink Flash Kairos Magic
Missing Code Components ✗ – – – – ✗ – –
Dependency Issues ✗ – ✗ ✗ ✗ – ✗ –
Absent Required Files ✗ – ✗ ✗ ✗ ✗ ✗ –
Unspecified Train/Test Files* ✗ – ✗ – ✗ ✗ – –
Incomplete Documentation – ✗ – – ✗ ✗ – –
Software Bugs – ✗ – ✗ ✗ ✗ ✗ ✗
Unintended Code Retained** – – ✗ ✗ – – ✗ –
Paper-Code Inconsistency – ✗ – – ✗ ✗ – –
Pre-Trained/Scratch Model Variance – ✗ ✗ ✗ – ✗ ✗ ✗

Evaluation Datasets. 10 custom datasets: 4 from a single-host
environment (SDatasets) and 6 from a multi-host environment
(MDatasets).

Evaluator Experience
Ambiguous README Instructions. During the testing phase,
Atlas outputs detected attack entities and their prediction scores
to the console. Users are expected to manually extract this output,
clean it, and format it into a JSON file required by the evaluation
script. This process involves subjective decisions, such as removing
redundant entities (e.g., repeated process instances referencing the
same file) and adding "obviously related" entities, without any ex-
plicit criteria. The absence of clear guidelines results in inconsistent
and potentially non-reproducible evaluation outcomes. We raised a
GitHub issue [1] and contacted the authors via email to verify our
cleaned entity set, but did not receive a response. Additionally, the
README omits critical instructions: users must manually modify
hard-coded flags in atlas.py to generate resampled files and adjust
them again to load those files for training. Failure to do so results
in a FileNotFoundError during training. We sought clarification
from the authors regarding this workflow but received no reply.
Inconsistency Between Paper and Shared Code. A critical
step in Atlas’s pipeline is Selective Sequence Sampling, where be-
nign sequences are under-sampled and attack sequences are over-
sampled to produce a balanced training dataset. The paper describes
a mutation-based oversampling technique that randomly replaces
vocabulary tokens in lemmatized sequences with other tokens of
the same semantic type (e.g., a system_process may only be sub-
stituted with another process-related word, not a file-related one).
However, manual inspection of the code reveals that this strategy
is not implemented. Instead, the code performs oversampling by
simply duplicating and appending malicious samples [58]. We re-
ported this discrepancy to the authors via email but did not receive
a response.
Runtime Error. The evaluator encountered a runtime error in
graph_reader.py, caused by improperly formatted node names
and attributes in the .DOT file generated by graph_generator.py.
Specifically, missing quotation marks around node identifiers and IP
addresses led the NetworkX library’s read_dot() function to mis-
interpret these entries, resulting in a parsing failure. To address the
issue, graph_generator.py was modified to enclose node names

and IP attributes in quotation marks and to ensure proper format-
ting before writing the .dot file.
Impact of Noise Reduction. Atlas’s paper reports entity-based
investigation results prior to applying noise reduction, whereas the
released code computes results after noise has been removed from
the provenance graph. This substantially reduces the number of
entities considered. Models trained by the evaluator exhibited no-
table discrepancies in entity-level evaluation, yielding significantly
lower F1 scores for several scenarios: S2 (0.51 vs. 0.92), S4 (0.72 vs.
0.89), M1 (0.41 vs. 0.94), M2 (0.46 vs. 0.93), M3 (0.63 vs. 0.97), and M4
(0.62 vs. 0.92). We contacted the authors via email for clarification
and guidance regarding this inconsistency but did not receive a
response.

Reproduction Results
F1 scores for the S1 and S2 datasets matched the reported values

at the event-level exactly. Entity-level S1, S3, M3, M5, and event-
level S3, S4, M1, M2, M3, M4, M5, and M6 results differed by < ±2%
from the reported values. Entity-level S2, M1, M2, M4, and M6
results differed from the reported values by ±2 − 10%, while S4
showed a difference of > ±10%.

4.3 ThreaTrace
ThreaTrace [73] is an anomaly-based, node-level detector that differ-
entiates itself from prior graph-based approaches (e.g., StreamSpot [48],
Unicorn [24]) and path-based detectors (e.g., ProvDetector [72]) by
employing multiple GraphSAGE [23] models to learn the roles of
benign nodes in a provenance graph. To reduce both false positives
and false negatives, ThreaTrace trains multiple sub-models itera-
tively, masking confidently classified nodes and forwarding only
ambiguous ones to subsequent models. During detection, a node is
classified as benign if at least one sub-model correctly identifies its
type (e.g., file, process, socket); otherwise, it is flagged as abnormal.
As ThreaTrace operates in a streaming setting, flagged nodes are
held in a queue for a time window 𝑇 to capture their evolving con-
text. If a node remains flagged as abnormal within this window, it
is deemed anomalous. An alert is raised when the number of such
anomalous nodes exceeds a predefined tolerance 𝑇 .
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Evaluation Datasets. 11 datasets: (i) the StreamSpot dataset [61],
(ii) the Unicorn SC datasets (consisting of the SC-1 [49] and SC-
2 [50]) and (iii) the DARPA TC datasets (Theia, TRACE, CADETS
and Five Directions from Engagement 3 and Engagement 5) [15].

Evaluator Experience
Variability Across Training Runs. The evaluator observed that
training the models from scratch on the Unicorn and DARPA TC
E3 datasets resulted in performance variations exceeding 5% across
runs, indicating high variability in the training process. This issue
persisted despite attempts to contact the authors for clarification.
Consequently, all reported results are averaged over three indepen-
dent training runs to ensure consistency.
Use of Testing Data in Training.While debugging ThreaTrace,
the evaluator identified three instances of potential overlap between
validation and testing data, constituting a data snooping issue [7].
In the StreamSpot training script, validation and testing graphs are
selected randomly, without explicitly preventing the same graph
from appearing in both sets [68]. In the Unicorn training script, one
validation set (validateSetA) includes 10 attack graphs randomly
sampled from a pool of 25, all of which also appear in the test set.
The other validation set (validateSetB) contains 50 benign graphs,
which may overlap with the 25 benign test graphs due to sampling
without exclusion [69]. In the DARPA TC Engagement 3 script,
each model is evaluated on the test set during training, and models
with poor performance are subsequently discarded [67]. Disabling
this step results in a significant performance drop, with F1 scores
falling to 0.44 for Theia, 0.00 for TRACE, 0.54 for CADETS, and
0.40 for Five Directions. These issues were reported via a GitHub
issue [47] and subsequently through email. The author acknowl-
edged the oversight in the DARPA TC E3 script and clarified that
this validation step was originally introduced for debugging, but
was inadvertently left in the published code.
Issues with Pre-trained Models. The pre-trained StreamSpot
model misclassified both benign and attack graphs as benign, while
the TRACE model produced near-zero precision, recall, and F1
scores. Further, a required file (threshold_unicorn.txt) needed
to run the pre-trained Unicorn model, was missing from the reposi-
tory. The evaluator reported these issues via GitHub [44] and email.
The author acknowledged the problems over email. However, the
missing threshold file was not provided.
Missing Script and Ground Truth. ThreaTrace evaluates on the
DARPA TC Engagement 5 (E5) datasets; however, unlike for E3,
it does not provide dedicated training or evaluation scripts for E5.
The existing E3 script contains hardcoded file names, making it
unsuitable for E5 without modification. As a result, the training and
testing files for E5 remain unspecified. We raised these concerns
via GitHub [41, 42]. Additionally, the ground truth labels for E5 are
absent from the repository. Upon contacting the authors by email,
we were informed that the source code and ground truth for E5
were lost due to a server error.

Reproduction Results
ThreaTrace’s F1 scores differed by less than±2% for the StreamSpot,

Unicorn SC-1 and DARPA TC E3 CADETS datasets. The F1 scores
differed within ±2-10% for Unicorn SC-2, DARPA TC E3 Theia,
TRACE and Five Directions. The repository is missing necessary

resource files required to evaluate the the DARPA TC E5 datasets,
making them non-reproducible.

4.4 AirTag
AirTag [17] introduces a novel approach by bypassing the tradi-
tional PIDDL step of constructing a provenance graph. Instead, it
demonstrates that training a deep learning model directly on raw
event logs yields superior detection performance. AirTag is eval-
uated against Atlas [5], which addresses class imbalance through
selective sampling. In contrast, AirTag employs a one-class support
vector machine (OC-SVM) [62], trained exclusively on benign data.
The OC-SVM estimates a decision function that defines a boundary
around the benign data; any sample falling outside this boundary
is classified as malicious. For attack investigation, AirTag first em-
beds log entries using BERT [16], and then uses the OC-SVM to
classify each entry as benign or malicious. Malicious entries are
subsequently used to construct a provenance graph that visualizes
the inferred attack.
EvaluationDatasets. 20 datasets: ten sourced fromAtlas (SDatasets
and MDatasets, section 4.2), four from DepImpact [19], and six cre-
ated by the AirTag authors (UDatasets). UDatasets contain logs
collected from single-host environments where the attacks are
forced to fail to evaluate its effectiveness in scenarios where the
attack chain is incomplete.

Evaluator Experience
Missing Dataset Resources. Unlike the SDatasets and MDatasets,
no scripts were provided to reproduce results for the UDatasets in
an end-to-end manner. Since both SDatasets and UDatasets were
simulated in single-host environments, we identified the SDataset
scripts as a potential substitute for evaluating the UDatasets. How-
ever, the untokenized training files required for the false-positive
filtering step were missing. This step relies on word frequency
analysis to ensure that malicious classifications are both rare and
robust, and it requires the dataset to follow a specific format. After
raising this issue on GitHub [65], the authors uploaded additional
files. Unfortunately, these files corresponded to the SDatasets, not
the UDatasets. Despite further follow-up, no additional response
was received.
Problematic Deployment Details. AirTag’s codebase includes
deployment-specific configurations that hinder reproducibility. Al-
though the repository’s README recommends executing a Bash
script for end-to-end evaluation on the SDatasets and MDatasets,
GPU identifiers are hardcoded to match the original deployment
environment. This limitation is undocumented, not configurable
via command-line arguments, and only apparent upon manual code
inspection. As a result, users following the provided instructions
without modification are likely to encounter significantly increased
training times, as the model silently defaults to CPU execution
when the specified GPU is unavailable.
Runtime Error. The evaluator encountered the same graph con-
struction issue in AirTag as previously observed in Atlas. This issue
was independently confirmed with the authors [64].
Inaccurate File Labels. An inconsistency was initially observed
between AirTag’s paper and code during the false-positive filter-
ing step. The paper indicates that word frequencies used for the
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rareness check are computed from testing files; however, for three
of the four SDatasets, the code instead used training files. Upon
raising this issue via email, the authors clarified that mislabeled
filenames were the source of confusion. A manual review of Atlas
’s preprocessing confirmed that dataset labels vary across testing
phases—for example, “training S1” in one phase may be labeled
“testing S1” in another. Because AirTag ’s authors used data from a
specific phase, the filenames appeared inconsistent, although the
actual data usage was correct.

Reproduction Results
F1 scores of the reproduced results differed by < ±2% from

the reported values for all SDatasets except S2, and all MDatasets
except M4 (both Host 1 and Host 2). For both the S2 and M4 (both
hosts) datasets, F1 scores differed within ±2 − 10% of the reported
values. The repository is missing necessary resource files required
to evaluate the UDatasets, making them non-reproducible.

4.5 NodLink
NodLink [40] detects advanced persistent threats (APTs) by for-
mulating the problem as an instance of the Steiner Tree Prob-
lem (STP) [28, 29], a classical graph theory problem that seeks
a minimum-weight subgraph connecting a specified set of terminal
nodes. NodLink adapts this formulation to provenance-based intru-
sion detection by first identifying indicators of compromise, pro-
cess nodes flagged as anomalous by a variational autoencoder [36],
and then attempting to connect them. Unlike traditional STP ap-
proaches that rely on shortest-path algorithms, NodLink constructs
size-bounded subgraphs around each anomalous node, expanding
nodes based on an importance score that combines anomaly score,
node degree, and distance. This process operates over all system
events within rolling 10-second windows. Anomaly scores are ag-
gregated per subgraph and updated incrementally as subgraph are
merged via a cache. Subgraph with unusually high aggregate scores
are flagged using Grubbs’ Test [22].
Evaluation Datasets. 6 datasets: (i) DARPA TC E3 CADETS, Theia,
and TRACE, (ii) an attack dataset simulated in an industrial envi-
ronment (Industrial Arena dataset), (iii) an attack dataset simulated
in a lab environment (In-Lab Arena dataset), and (iv) an open world
dataset containing real client data from a security company (Open
World).

Evaluator Experience
Paper-Code Inconsistency. The paper states that only graphs
triggering alerts are counted as graph-level true positives (TPs),
and only process nodes within those graphs are considered node-
level TPs. However, code inspection revealed a deviation from this
description: all process nodes in cached graphs are counted as
node-level TPs, regardless of whether their corresponding graphs
triggered alerts. Additionally, while the paper describes a cache
eviction policy based on graph energy (a function of anomaly score
and update time) intended to limit memory usage, the code in-
stead retains the top 20 graphs per time window based solely on
anomaly score. We raised these discrepancies with the authors [66],
but received no response. Since NodLink only reports node-level
recall, we inferred additional metrics by analyzing the codebase.
Given that node-level recall is computed across all cached graphs,

we treated attack-relevant process nodes in those graphs as node-
level TPs. Process nodes in the cache that are not attack-relevant
were treated as node-level false positives (FPs), allowing us to cal-
culate node-level precision. Similarly, cached graphs without any
attack-relevant nodes were considered graph-level FPs, while those
containing such nodes were treated as graph-level TPs, enabling
computation of graph-level precision. However, because the code
does not support identifying graph-level false negatives under the
published methodology, we were unable to compute graph-level
recall.
Missing Script andGroundTruth.NodLink’s repository includes
scripts only for the In-Lab Arena dataset, which rely on hardcoded
file names that exists only within that dataset. Consequently, evalu-
ating NodLink on other datasets requires prior knowledge of which
files to use for training and testing. Furthermore, the provided code
is tailored to the format of the In-Lab Arena logs, necessitating
separate parsing scripts for the E3 datasets. Ground-truth labels
are also essential for evaluation, but were not included. We con-
tacted the authors via GitHub [2] and email, and were referred to
an external repository containing a parsing script. However, no
ground-truth labels or guidance on training/testing file selection
was provided, and our follow-up request received no response.
Undocumented Structural Modification in Code. While the
NodLink paper reports evaluation metrics for the full In-Lab Arena
dataset, the accompanying code splits the dataset into three subsets
without documenting how results are aggregated. Upon contacting
the authors [3], we confirmed that the reported metrics are com-
puted by summing the results across all subsets before calculating
dataset-level values.

Reproduction Results
For the In-Lab Arena dataset, the node-level F1 score of the repro-

duced result differed by > ±10% from the reported value, while the
graph-level F1 score could not be calculated as the graph-level recall
could not be determined from the code. The Industrial Arena and
Open World datasets are not available publicly, and hence, results
on these could not reproduced. Similarly, data processing scripts
and ground truth labels for the E3 CADETS, Theia and TRACE
datasets are missing, making their evaluations non-reproducible.

4.6 Flash
Flash [70] introduces efficient system-level anomaly detection by
combining graph-based representation learning (capturing patterns
in graphs of system events) and semantic attribute encoding (trans-
forming system attributes with context into rich vector representa-
tions). A key innovation is its embedding recycling database, which
caches pre-computed graph embeddings for reuse during inference,
significantly reducing latency without compromising accuracy. To
suppress noise, Flash employs selective edge traversal and attribute
abstraction, emphasizing causally meaningful relationships. It sup-
ports both batch and real-time log processing, incorporates posi-
tional encoding to model temporal dependencies, and integrates
lightweight classifiers (e.g., XGBoost, SVM, Random Forest) for
fallback anomaly detection. Additionally, Flash constructs attack
evolution graphs to visualize and analyze detected anomalies.
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Evaluation Datasets. 8 datasets: (i) DARPA TC E3 Theia, TRACE,
CADETS, Five Directions, (ii) DARPA OpTC [56], StreamSpot, and
(iii) Unicorn SC-1 and SC-2.

Evaluator Experience
Inconsistent and Missing Code. The provided notebooks lacked
clear instructions for conducting evaluations, and several key com-
ponents were either missing or inconsistent with the paper. For
instance, while a Word2Vec model was included in the code, it was
never utilized; instead, a pre-trained model was imported from an
external library. To proceed, we modified the pipeline to incorpo-
rate our own custom-trained Word2Vec model. Although the paper
reports results using XGBoost, no implementation was provided for
training or evaluating it. Finally, only SC-2 of the Unicorn dataset
was supported in the code, despite SC-1 being discussed in the
paper; no code was available for evaluating SC-1.
Inconsistent Dataset Sizes. The aggregate results reported in the
paper do not align with the number of samples observed during our
reproduction runs using the provided notebooks. Since each note-
book independently fetches and parses the dataset using its own
embedded logic (without any modification on our part) the discrep-
ancies in sample counts between our runs, the published results,
and those used for the pre-trained models suggest inconsistencies
in data processing. Furthermore, several dataset-specific notebooks
omit the reporting of true negatives, which was the metric with the
largest deviation from the values presented in the paper.
Dataset Parsing Failures. Parsing the StreamSpot dataset failed
due to incorrect directory handling in the provided parser, which
caused downstream scripts to break. We corrected the parser to
enable successful reproduction of the pre-trained results.
Training File Paths. For the OpTC dataset, the absence of docu-
mentation regarding training file paths resulted in errors during
retraining. Although the authors shared a link to benign files fol-
lowing our outreach, they did not specify which files were required
or how they should be integrated into the workflow. Additional
follow-up inquiries did not receive a response.
Inefficient Code. Model retraining on the Unicorn dataset was
prohibitively slow due to inefficient implementation. Although a
suggested fix [4] improved execution time, the retrainedmodels pro-
duced highly variable results, occasionally deviating significantly
from the pre-trained outputs without any consistent pattern. This
variability raises concerns about the stability and reproducibility
of the training process.

Reproduction Results
The reproduced F1 score for the Unicorn SC-2 dataset matched

the reported value exaclty. For all other datasets except for OpTC
(Attack 2) and Unicorn SC-1, F1 scores differed by < ±2% from the
original results. The F1 score of OpTC (Attack 2) differed within
±2−10% of the reported valuewhile the code required for evaluating
the Unicorn SC-1 dataset was missing, making its evaluation non-
reproducible.

4.7 Kairos
Kairos [10] introduces a novel framework for graph learning in
PIDDL systems by modeling both temporal and structural rela-
tionships within provenance graphs. It adopts an encoder-decoder

architecture designed to operate on a stream of edges, dynamically
updating the graph representation as it evolves over time. The en-
coder leverages a temporal graph network (TGN) [59] composed
of a unified message passing (UniMP) model [63] and a gated re-
current unit (GRU) [11]. UniMP embeds each edge based on the
state of its neighborhood, while the GRU updates node states in
response to new edges. The decoder applies a multilayer percep-
tron to predict edge types. The difference between the predicted
and actual edge type defines the edge’s reconstruction error. Kairos
processes system events in time windows, queuing overlapping
windows based on shared suspicious nodes. Suspicious nodes are
identified using a combination of edge reconstruction error and
frequency. If the aggregated anomaly score within a queue exceeds
a predefined threshold, the associated time windows are flagged as
malicious.
Evaluation Datasets. 8 datasets: (i) StreamSpot, (ii) DARPA TC
Theia, CADETS, and ClearScope from both Engagement 3 and 5,
and (iii) Darpa OpTC.

Evaluator Experience
File Generation Bug.During testing, Kairos uses an attack_list
to label malicious subgraphs, assigning a ground truth label of 1 if
a matching name is found, and 0 otherwise. These lists are dataset-
specific and are expected to be automatically generated as part
of the evaluation workflow. However, for the E5 CADETS, Theia,
and ClearScope datasets, the required files are not generated. This
results in a runtime error for E5 CADETS and E5 Theia due to
missing dictionary keys corresponding to attack graph names. In
the case of E5 ClearScope, the differing code structure avoids a crash,
but the issue causes no graphs to be labeled as malicious, leading
to zero true positives and zero false negatives being reported. We
reported this issue to the authors [43, 45], but did not receive a
response.
Notebook Issues. Several issues were encountered in the provided
notebooks. In the E5 Theia notebook, the saved and loaded GNN
model filenames were inconsistent, requiring manual correction.
The OpTC preprocessing notebook, unlike others, did not specify
training and testing files, necessitating manual identification. Fur-
thermore, ground truth labels for OpTC were missing, resulting in
a runtime error. This issue was reported to the authors [46], but no
response was received.

Reproduction Results
F1 scores of the reproduced results for StreamSpot, E3 CADETS,

and E3 ClearScope matched the reported values exactly, while they
differed by < ±2% for E3 Theia. F1 scores for E5 ClearScope, Theia,
and CADETS could not be calculated due to the file generation bug
outlined above. Ground-truth labels for the OpTC dataset are also
missing, making its evaluation non-reproducible.

4.8 Magic
Magic [31] detects stealthy attacks by applying graph representa-
tion learning to system logs. Its core innovation is an edge merging
technique that reduces redundancy while preserving critical infor-
mation, thereby simplifying the graph structure without compro-
mising fidelity. Magic further employs a graph masked auto-encoder
(GMAE) [27] to learn robust node embeddings by reconstructing
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masked node relationships, enhancing its ability to detect previ-
ously unseen attack patterns. For anomaly detection, it uses a k-
nearest neighbors (KNN) approach, leveraging a K-D Tree built
from embeddings of benign system behavior. Anomaly scores are
computed based on distances to the nearest benign neighbors, and
entities exceeding a defined threshold are flagged as suspicious.
An adaptive learning mechanism continuously refines the model
using system feedback, improving its capacity to detect advanced
persistent threats (APTs) while maintaining a low false positive
rate.
EvaluationDatasets. 5 datasets: (i) StreamSpot, (ii) UnicornWget [51],
and (iii) DARPA E3 TRACE, Theia, and CADETS.

Evaluator Experience
Labeling and Data Organization Errors. TheWget dataset exhib-
ited inconsistencies due to misordered files during preprocessing.
The labeling script incorrectly assumed that the first 25 graphs
represented attacks and the remainder were benign. However, be-
cause file ordering was arbitrary, this assumption led to mislabeled
samples. This issue had been previously raised in an open GitHub
issue [33], where the authors clarified that the labeling logic re-
lied on file order rather than explicit metadata. To address this,
the evaluator manually enforced a deterministic file order, which
improved the results but did not fully eliminate discrepancies. Fur-
ther investigation revealed additional inconsistencies caused by
non-deterministic training conditions. Although a fixed seed was
expected for reproducibility, it was overridden in multiple loca-
tions within the training scripts, leading to variations in output
across runs. After correcting the seed settings, classification results
became more stable, though minor variations still persisted.

Reproduction Results
F1 scores for E3 Theia and CADETS matched the reported values

exactly. They differed by < ±2% for StreamSpot and E3 TRACE and
by ±2 − 10% for Wget.

5 Interactions with authors
In the process of reproducing results from various research pa-
pers, we contacted the original authors via GitHub (by opening
issues) and sent an email to all authors requesting clarifications and
to resolve technical challenges. When initiating contact through
GitHub, we allowed five business days for a response before send-
ing a follow-up email. Authors were deemed unresponsive if no
reply was received within seven business days following the email.
Table 6 summarizes the number of issues raised, responses received,
and associated response times.

We define an issue as a distinct query; for example, a request
for dependency clarification and a request for a missing file are
treated as separate issues. Requests made via GitHub or email may
contain multiple queries so one reply may lead to the same ‘time to
respond’ for all the included queries. If a query applies to multiple
datasets but requires distinct responses (e.g., missing ground truth
data for each dataset), each instance is counted as a separate issue.
Conversely, if a single response resolves a shared problem across
multiple datasets (e.g., a common bug), it is counted as one issue.

These interactions reveal varying levels of engagement across
research groups, reflecting differences in accessibility and willing-
ness to support reproducibility efforts. Groups such as ThreaTrace,
AirTag, and NodLink responded to most queries, indicating ac-
tive maintenance and a commitment to supporting external vali-
dation. In contrast, ShadeWatcher, Kairos, and Atlas authors did
not respond at all. Such inconsistency poses a substantial barrier
to reproducibility, as the absence of author engagement can effec-
tively block attempts to validate published results. In some cases,
non-responsiveness may be due to practical constraints, such as
maintainers transitioning to new roles or institutions. Ideally, repos-
itories should clearly indicate whether they are actively maintained,
enabling the research community to set appropriate expectations
and plan accordingly.

Table 6 also reports average response times for each system,
highlighting both delayed replies and complete non-responsiveness.
While some authors responded within minutes, others took sev-
eral days or even weeks, as observed with ThreaTrace. In contrast,
the authors of Flash replied within an impressive 38 minutes (0.63
hours), demonstrating strong responsiveness. However, the col-
umn indicating issues resolved reveals that prompt replies do not
always equate to effective support. Indeed, several issues were ac-
knowledged but left unresolved. For instance, although ThreaTrace
provided multiple responses, many failed to address the underlying
concerns. This distinction underscores an important point: timely
or frequent responses alone are not sufficient. Reproducibility re-
mains hindered when issues are inadequately addressed or left
unresolved.

Overall, our experience highlights that while author responsive-
ness is valuable, it must be accompanied by substantive, solution-
oriented communication to meaningfully support reproducibility.
Although not always expected, clear indications of a project’s main-
tenance status are highly beneficial and contribute significantly to
fostering a more reproducible and collaborative research ecosystem.

6 Related Work
We review prior work on reproducibility in order of increasing
domain specificity.We begin with studies that assess reproducibility
across different computer science domain, then focusing on security
systems that incorporate machine learning, and finally narrowing
to intrusion detection systems.
Reproducibility in Computer Science. A decade ago, a series of
studies examined whether code accompanying ACM systems pa-
pers could be successfully built and executed. The initial investiga-
tion [12] reviewed approximately 600 papers to determine whether
they were supported by code and whether a student could build
and run the systems within 30 minutes. The study found that only
30% of code-backed papers could be built successfully. This was
followed by a follow-up study by the original authors [13] (with
relaxed constraints, even so only about 50% of the systems could be
successfully built) and an independent replication effort [39] is on-
going. A study in image processing [38] assessed code availability
and found that none of the 15 papers examined provided code. A
subsequent, larger study [71] extended this analysis to 134 papers,
revealing that only 9% had code available. Similarly, a study in com-
putational linguistics [74] examined approximately 400 papers to
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Table 6: Issue Response and Resolution Metrics Across Systems

System # Issues # Responded #Resolved Time to Respond (Hours) Avg. Time/Issue (Hours)

ShadeWatcher 3 0 0 N/A N/A
Atlas 21 0 0 N/A N/A
ThreaTrace 20 17 2 [10×226.02, 4×477.15, 3×13.4] 247.59
AirTag 15 9 3 [6×13.7, 1×8.02, 1×34.25, 1×6.42] 15.54
NodLink 12 10 2 [9×19.78, 1×0.48] 17.85
Flash 3 1 1 [1×0.63] 0.63
Kairos 5 0 0 N/A N/A
Magic 2 1 1 [1×1.75] 1.75

contact authors of those without data and code, and attempted to re-
produce results from 10 of them. Of those, only 6 were reproducible,
and just one yielded results identical to those reported in the origi-
nal publication. Our work builds upon and extends these efforts by
conducting a comprehensive review that directly addresses each
of these aspects within the context of provenance-based intrusion
detection systems.
Machine Learning Security. The integration of machine learning
into security systems is increasingly seen as inevitable [6], and the
reproducibility of research in this space has drawn growing atten-
tion. A study of 750 machine learning papers published in security
conferences [54] found that 60% did not provide any code to repro-
duce their experiments. Among those that did, only 20% yielded
results consistent with the original publications. Other studies have
highlighted broader issues in the machine learning for security
literature. For example, an analysis of 30 papers revealed that each
exhibited at least three of several identified methodological pit-
falls [7]. Similarly, a review of machine learning-based location
privacy-preserving mechanisms [57] found that these approaches
often failed to protect user data when tested against real-world
distributions. While comprehensive reproducibility analyses ex-
ist for general machine learning security research [54], our work
focuses specifically on a narrower and more specialized domain:
provenance-based intrusion detection systems. Our methodology
also differs in key respects. Rather than halting at the first sign of
technical obstacles, we conduct a detailed artifact evaluation, ana-
lyzing each system component and incorporating feedback from
the original authors to troubleshoot issues. Additionally, given the
smaller number of systems under review, we document the eval-
uator experience for each case, offering future researchers a clear
sense of the effort and expectations involved in replicating these
systems.
Intrusion Detection. To the best of our knowledge, the repro-
ducibility of PIDDL systems has not been systematically evalu-
ated prior to this work. However, prior studies have identified
reproducibility-related concerns in general intrusion detection sys-
tems. A recent survey [60] found that only 2 out of 21 host-based
IDSes evaluated system efficiency in terms of CPU and memory
overhead (in our study 4 out of 8 systems do so, see Table 4). This
is particularly concerning given the growing popularity of graph-
based intrusion detection techniques, which, while enabling rich
feature extraction, are often computationally expensive [78, 79].

The same study also reported that only 6 of the evaluated sys-
tems measured any of the key performance metrics—detection time,
testing time, classification time, and inference time—which are es-
sential for assessing real-time detection capabilities (in this study
8/8 report test time performance, see Table 4). While these prior
findings highlight indirect reproducibility challenges in the broader
IDS literature, to the best of our knowledge our work is the first to
directly examine reproducibility of detection performance.

7 Conclusion
This paper presents a comprehensive reproducibility study of eight
Provenance-based IntrusionDetection usingDeep Learning (PIDDL)
systems. It evaluates whether these systems can be reproduced
from publicly available artifacts, identifying critical gaps in code
completeness, data availability, documentation, and evaluation con-
sistency. The study reveals that no system is fully reproducible
end-to-end, with flaws including missing components, configura-
tion issues, and undocumented behaviors. We make the following
recommendations to the community:
Provide Complete and Self-Contained Codebases. Ensure all
core components are included, avoiding reliance on proprietary or
missing modules. It is best to host versioned, archived repositories.
Standardize Dataset Interfaces and Label Formats. Use con-
sistent file formats, naming conventions, and include clearly docu-
mented ground-truth labels and splits.
Automate Evaluation Pipelines with Configuration Inter-
faces. Replace hardcoded parameters with configuration options
and provide end-to-end scripts with clear usage instructions.
Ensure Deterministic and Transparent Training. Fix random
seeds, avoid nondeterministic operations, and log environment
details to reduce variance in the results produced.
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A Editor-Evaluator Interaction Examples
In the following subsections we describe the sequence of inter-
actions between the evaluators and editors in our team, and the
authors of the PIDDL systems that we were examining. For each
issue mentioned in the evaluator experience, in cases where the
evaluators were unable to resolve the issues on their own, we show
below the significant points of interaction.

A.1 ShadeWatcher
Missing Code.
Evaluator: Reported that the code did not generate the data re-
quired by the recommendation model.
Editor: Investigated and found that the interaction extraction com-
ponent (required to generate this data) was missing. Requested the
missing code from the authors, but received no response.

Investigating Workarounds for the Missing Code.
Editor: Found Provninja’s fork of ShadeWatcher. Recommended
that the evaluator examine how it implements the missing interac-
tion extraction component.
Evaluator: Reported that the interaction extraction code in Provn-
inja’s fork does not align with the original paper.
Editor: Verified that Provninja’s approach is inconsistent with the
method described in the original paper.
Editor: Contacted ProvNinja’s authors to request access to their
fork after its removal. Received no response.

A.2 Atlas
Ambiguous README Instructions.
Evaluator: Reported a FileNotFound error during training, with
no context or explanation provided in the README.
Editor: Recommended that the evaluator manually modify the
hardcoded flags in atlas.py to first generate the resampled files,
and later load them for training.
Evaluator: Applied the fix and reported that the error was success-
fully circumvented.
Evaluator: Reported that the README provided unclear instruc-
tions on manually cleaning predicted entities before evaluation,
making it difficult to determine which entities to include or exclude.
Editor: Verified evaluator’s cleaned entities. Recommended sharing
the complete workflow (first generating resampled files and later
loading them for training by modifying hardcoded flags) and the
cleaned entities with the author for validation.
Evaluator: Shared the workflow and cleaned entities with the au-
thor for validation and guidance. Received no response.

Inconsistency Between Paper and Shared Code.
Evaluator: Reported that the oversampling strategy described in
the paper is not implemented. Instead, the code duplicates malicious
samples.
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Editor: Verified the issue and recommended that the evaluator
contact the author for guidance.
Evaluator: Reported the inconsistency to the author and requested
guidance. Received no reply.

Runtime Error.
Evaluator: Reported a runtime error in graph_reader.py.
Editor: Investigated the cause of the error, and recommended
that the evaluator modify graph_generator.py to ensure that
node names and IP attributes are enclosed in quotation marks
when written to the .dot file, so they are correctly parsed by
graph_reader.py.
Evaluator: Applied the fix and reported that the error was success-
fully circumvented.

Impact of Noise Reduction.
Evaluator: Reported a significantly lower number of entities in
the results compared to Atlas’s reported results in the paper, along
with lower F1 scores in the entity-level evaluation.
Editor: Investigated the issue and found that the entity counts
reported in Table 4 of the Atlas paper (computed as TP + FP + TN +
FN) correspond to the number of entities before noise reduction, as
seen in Figure 8. Since the code included noise reduction as part of
its pipeline, it was more appropriate to report results after noise
reduction. Recommended that the evaluator report the issue to the
author.
Evaluator: Reported the issue to the author. Received no reply.

A.3 ThreaTrace
Variability Across Training Run Results.
Evaluator: Reported that ThreaTrace produced inconsistent re-
sults, with evaluation results across different training runs varying
by more than 5%. Suggested that the authors may have used a fixed
random seed for stability.
Editor:Asked the evaluator to verify that no residual data remained
between training runs and reach out to the author to see if a specific
seed value was used.
Author: Verified that no specific seed value was used.
Evaluator: Verified that no residual data remained between train-
ing runs.
Editor: Reported the variability in results to the authors.
Author: Acknowledged the issue but no solution was provided.
Editor: Recommended that the evaluator run (both training and
testing) ThreaTrace three times per dataset and average the result-
ing metrics.

Use of Testing Data In Training.
Evaluator:Noticed that the validation sets used during the training
phase had potential overlap with the test data in the Streamspot,
Unicorn, and DARPA TC E3 training scripts.
Editor: Verified and asked the evaluator to escalate the issue to the
author.
Author: Acknowledged the issue, and provided reasoning for over-
lap in the DARPA TC E3 training script. No explanation was pro-
vided for Streamspot and Unicorn training scripts. No code was
provided.

Editor: Suggested that the evaluator remove the code causing the
train/test overlap in the DARPA TC E3 training script, and re-run
the experiment.
Evaluator: Reported a significant performance drop on the DARPA
TC E3 datasets after removing the code causing train/test overlap.
Editor: Verified and reported the issue to the author.
Author: Acknowledged the issue, but no solution was provided.

Issues with Pre-trained Models.
Evaluator: Reported that the provided pre-trained models for
StreamSpot and TRACE did not work as expected and produced
poor results, and that a threshold_unicorn.txt (required for test-
ing the pre-trained model for the Unicorn dataset) was missing from
the repository.
Editor: Verified and asked the evaluator to escalate the issue to the
author.
Author: Acknowledged the issues, but did not provide the missing
threshold file or any fix for the pre-trained models.

Missing Script and Ground Truth.
Evaluator: Reported the absence of a ground truth and training
script for DARPA TC E5 datasets (and hence any hard-coded file
names for training and testing as in the DARPA TC E3 script).
Editor: Verified and escalated the issue to the author.
Author: Provided reasoning for the missing training script and
ground truth, and recommended contacting the authors of Kairos [10]
to obtain the ground truth. No training script, file names for train-
ing/testing, or ground truth was provided.
Editor: Since Kairos’s DARPA TC E5 ground truth is a list of ma-
licious time windows (and hence sub-graphs), it was not directly
applicable (without significant effort) to ThreaTrace, which is a
node-level detector. Furthermore, without concrete file names for
training and testing, evaluation on DARPA TC E5 was not possible.

A.4 AirTag
Missing Dataset Resources.
Evaluator: Reported that, unlike the other datasets, there are no
run logs (copies of the system’s output provided by the authors as
a record of their exact run results) for the UDatasets to compare
results to.
Editor: Compared the run log results for the other datasets with
the graphs in the paper (which did not provide exact values) and
found that the trends matched exactly. Recommended continuing
the evaluation of the UDatasets and comparing the results to ap-
proximate values derived from the paper’s graphs.
Evaluator: Reported that there are no scripts or instructions to
evaluate the UDatasets.
Editor: Investigated and identified the SDataset scripts as a suitable
alternative for evaluating the UDatasets since both datasets were
simulated in single-host environments. Recommended attempting
the evaluation using those scripts.
Evaluator: Reported that the untokenized version of the UDatasets
was missing which was necessary for evaluation.
Editor: Verified that the files were missing and escalated the issue
to the author.
Author: Uploaded new files in response.
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Evaluator: Replied that the uploaded files did not correspond to
the UDatasets and requested the correct files. The author did not
respond.

Problematic Deployment Details.
Evaluator: (At the start of the evaluation effort) Reported that
AirTag’s evaluation was done in a setup with multiple GPUs and
questioned whether running the system in our single-GPU envi-
ronment would require significant code changes.
Editor: (Based on prior experience with AirTag) Informed the eval-
uator that modifying the GPU IDs in the bash script to match our
environment should be sufficient to get the system running.
Evaluator: Confirmed that the system was running and that re-
sults for SDatasets were obtainable. However, reported that the
MDatasets were taking too long to run (no results after 5 hours),
despite having changed the GPU IDs—it was assumed that the code
was using the GPU.
Editor: Investigated and found that the evaluator was using a
CPU version for one of the libraries. Concluded that the results for
SDatasets were likely produced via a CPU run and the MDatasets
failed due to being more compute intensive. Recommended switch-
ing to the GPU version of the library and trying again.
Evaluator: Confirmed the MDatasets were now running and re-
sults were successfully obtained.

Runtime Error.
Evaluator: Reported a bug in the graph file generated by AirTag.
Editor: Recommended that the evaluator run the graph generation
code to check whether the bug persisted.
Evaluator: Confirmed that running the code reproduced the exact
same graph file and that the bug persisted.
Editor: Verified the issue and escalated it to the author.
Author: Acknowledged the issue, explained the cause of the bug,
and suggested a fix.
Evaluator: Applied the fix but encountered a different bug after
resolving the first one. Reported the new issue to the author.
Author: Suggested another fix.
Evaluator: Implemented the fix and confirmed that the issue was
resolved.

A.5 NodLink
Paper-Code Inconsistency.
Evaluator: Reported that NodLink was only printing node-level
recall. They were able to obtain node-level precision from the code,
but graph-level metrics could not be obtained.
Editor: Investigated the issue and found that, based on the defi-
nitions of node-level and graph-level results, it should at least be
possible to obtain graph-level precision from the code. Explained
the reasoning to the evaluator and recommended trying again.
Evaluator: Reported that they were able to obtain graph-level pre-
cision successfully.
Editor: Noted during the investigation that NodLink’s true posi-
tive calculation and cache management technique did not appear
to align with the paper’s description, and recommended that the
evaluator examine this further.
Evaluator: Confirmed that this seemed to be the case.

Editor: Escalated the issue to the authors for verification. We did
not receive a response.

Undocumented Structural Modification in Code.
Evaluator: Reported that the repository was evaluating three dif-
ferent datasets and that it was not clear which datasets from the
paper these corresponded to. The README did not clarify this.
Editor: Verified the issue and recommended that the evaluator
escalate it to the authors for clarification.
Author: Clarified that the three datasets corresponded to the single
“In-Lab Arena” dataset from the paper.
Evaluator: Reported they were able to obtain results from the three
sub-datasets but the repository README did not specify how these
should be aggregated. Noted that averaging the results yielded bet-
ter performance than the metrics reported in the paper.
Editor: Suggested that the single dataset result in the paper was
likely an aggregation—not an average—of the three sub-dataset
results. Recommended that the evaluator reach out to the authors
with their aggregation results and method for verification.
Author: Confirmed that this was indeed how the results had been
aggregated.

A.6 FLASH
Inconsistent and Missing Code.
Evaluator: Noted that although the code contains a function to
train a Word2Vec model (train_word2vec_model), it is never used.
Word2Vec is instead loaded from a pre-trained library.
Editor: Contacted the authors to ask how to runWord2Vec training
from scratch, and what should be passed as the train_file_path
input.
Author: Responded that the benign training logs from the OpTC
dataset should be used. Once decompressed, the JSON files can be
parsed using the provided extract_logs function and passed to
the training function.
Evaluator: Then reported that the GNN and XGBoost training
scripts also required training file paths, but the README and code
did not specify which OpTC logs to use.
Editor: Followed up with the author asking for clarification on the
appropriate benign files for training the GNN and XGBoost mod-
els, since only evaluation files (e.g., 0201, 0501, 0051) were clearly
indicated. No response was received.

Inefficient Code.
Evaluator: Reported that retraining on the Unicorn dataset was
prohibitively slow and referred to a potential fix suggested in a
GitHub issue.
Editor: Reviewed the recommendation (noting that we cannot con-
firm whether or not the user suggesting the resolution on GitHub
was one of the authors) and decided to test its effectiveness.
Evaluator: Implemented the fix; while the code ran, the results
were inconsistent.

A.7 Kairos
File Generation Bug.
Evaluator: Reported a bug in two different notebooks that they
could not resolve. Also reported a significant performance issue in
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a third notebook, which was unusual since other notebooks with
results were close to the paper’s reported metrics.
Editor: Investigated the issue and recommended that the evaluator
escalate it to the authors. Noted that the issues across the three
notebooks were likely caused by the same underlying bug and
asked the evaluator to examine this further.
Author: Responded that the students who had worked on the
project had graduated.
Evaluator: Confirmed that the bug appeared to be the same across
all three notebooks and was manifesting differently due to the
variations in code structure.

A.8 Magic
Labeling and Data Organization Errors.
Evaluator: Reported inconsistent results when training on parsed

raw logs versus using the provided graph.pkl and checkpoint, de-
spite ensuring correct file ordering (first 25 attack logs, next 125
normal).
Editor: Recommended trying to rerun the code on multiple differ-
ent machines, while ensuring the same setup as the authors. Issues
persisted, so reached out to author.
Author: Confirmed the issue was due to unsorted filenames in
wget_parser.py and shared corrected results after sorting.
Evaluator: Clarified they had already applied sorting, but still ob-
served discrepancies.
Author: Reproduced evaluator’s results and identified the root
cause as inconsistent random seeds across files.
Evaluator: Applied fix and confirmed improved performance.
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