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In recent years, researchers have turned to provenance-based intrusion detection systems 
(PIDSs) as a promising way to spot attacks that evade past traditional defenses. At their core, 
these systems build provenance graphs, which act like detailed maps of how information flows 
through a computer. Such graphs treat system entities (e.g., processes, files, and network 
connections) as nodes, and the interactions between them (e.g., system calls) as edges. By 
analyzing these graphs, anomaly-based PIDSs learn what "normal" behavior looks like and then 
flag unusual activity, making them well-suited for catching stealthy attacks such as advanced 
persistent threats (APTs) or previously unknown zero-day exploits. 

Despite claims of near-perfect detection rates, today's PIDSs are nowhere near ready for 
real-world use. Their biggest flaw is how they report results: most state-of-the-art PIDSs 
generate coarse-grained alerts with tens of thousands of nodes or events, burying analysts 
under mountains of noise. This is not just an engineering oversight; it is the direct result of 
evaluation practices. By optimizing for specific evaluation metrics instead of usable outputs, the 
community has built detectors that are impressive on paper but fall short of being helpful to a 
security team. 

Our research also exposes deeper flaws in how current systems are designed and evaluated. 
This comes in the way of industry adoption [6]. Even when working from the same datasets, 
different studies use their own training and testing splits, preprocessing pipelines, and labeling 
strategies. These inconsistencies, common across many ML-driven fields [9], fragment 
evaluation and make it impossible to compare competing methods fairly. 

This article summarizes our recent efforts to address these challenges, drawing on two papers 
[3, 4] presented at USENIX Security 2025.  

The Need for High Quality of Attribution 
 
Evaluating a PIDS typically involves measuring detection quality in terms of true and false 
positives. However, we find that many state-of-the-art systems do not optimize for Quality of 
Attribution (QoA): the effort a human analyst must expend to interpret alerts, trace an attack’s 
root cause, assess its impact, and dismiss false positives. In practice, prior work often produces 
massive volumes of low-QoA output, much of it irrelevant to actual attack activity. The result is 



predictable: noisy reports that overwhelm analysts, fueling alert fatigue [1] and, ultimately, 
burnout [2]. 
 
We identified three main evaluation strategies used in assessing state-of-the-art systems. 

Neighborhood Approach: Labels all nodes within two hops of the ground truth nodes as 
malicious. This pulls in benign nodes that only share dependencies with attack events, leading 
to overestimation. 

Batch Approach: Groups events into fixed-size or time-based batches and assigns anomaly 
scores per batch. Benign events occurring alongside attacks are often flagged, inflating results. 

Source Approach: Labels all descendants of identified source nodes as malicious. This 
exaggerates attack scope: for example, normal activity after a process hijack is also marked 
malicious. 

 
Although systems built under these evaluation strategies may seem effective at flagging 
anomalies associated with attacks, they fall short when it comes to accurate node-level 
attribution. Prior work [7, 8] has acknowledged this gap, emphasizing the challenge posed by 
the overwhelming volumes of data that state-of-the-art PIDSs generate and the burden this 
places on security analysts. 
 
Our approach: We undertook a painstaking manual analysis of the datasets, cross-checking 
the textual documentation against the actual data to pinpoint the specific nodes involved in each 
attack. Whereas prior work labeled thousands of nodes as malicious, our analysis revealed that 
the true number is far smaller—between 41 and 123 nodes, as shown in Figure 1. 
 

 
Figure 1. Number of malicious nodes reported by each evaluation strategy, on DARPA TC datasets. 

 



By shifting the evaluation focus to the quality of attribution, we encourage the development of 
systems that deliver far more helpful results. Instead of rewarding detectors that flood analysts 
with thousands of noisy alerts, this approach promotes systems that highlight a small set of 
high-quality attack nodes containing the actual malicious payloads, outputs that analysts can act 
on directly. 

Achieving High Quality of Attribution 
Most existing systems look good on paper but fall short when analysts need fine-grained 
answers. Under our node-level evaluation, they simply aren’t designed to deliver the precision 
required. This gap led us to build Orthrus, a PIDS tailored for the job. Orthrus combines 
temporal graph learning with causality analysis to do two things analysts care about most: (1) 
detect node-level anomalies without relying on prior attack knowledge, and (2) reconstruct clear 
attack scenarios. Instead of drowning analysts in noise, Orthrus generates concise, high-quality 
summary graphs that spotlight the malicious activity. The result is less time wasted on irrelevant 
alerts and more time spent understanding real threats. As Figure 2 shows, Orthrus achieves this 
through five coordinated components. 

Graph Construction: Provenance graphs are built from raw system logs, with redundant edges 
pruned while preserving event order. 

Edge Featurization: Graphs are transformed into sequences of vectorized edges by 
transforming the textual attributes of entities into text embeddings using word2vec. These 
embeddings aim to embed entities with similar semantics closer in embedding space, and are 
used as node features in the graph. 

Temporal Graph Learning: An encoder-decoder architecture captures structural and temporal 
patterns. The encoder computes node embeddings by gathering the last activity of nodes and 
aggregating neighbor information with an attention-based graph neural network (GNN). The 
decoder passes node embeddings in an additional neural network and the model is trained 
end-to-end to predict system call types between connected nodes from benign activity. The 
resulting reconstruction loss serves as an anomaly score to assess malicious activity. 

Anomaly Detection: Malicious nodes are detected by thresholding and clustering. The 
threshold is automatically computed as the maximum loss encountered on the validation set. 
The flagged nodes are subsequently separated in two clusters with K-Means, with the 
top-cluster selected as reported attack nodes. 

Attack Reconstruction: Detected nodes are used in an attack reconstruction step, aiming to 
uncover more nodes by causality analysis from the graph structure and predicted scores [10]. 
Orthrus finally reports concise summary graphs representing the predicted attack path. 

 



 
Figure 2. Architecture of Orthrus. 

 
 
Evaluation of Orthrus 
 
We evaluate Orthrus (Figure 3) against five state-of-the-art baselines using our node-level 
strategy on six DARPA TC datasets, tuning all baselines consistently through grid search on key 
hyperparameters. 
 
We benchmark two variants of Orthrus: 

●​ Orthrus-full: full Orthrus pipeline as shown in Figure 2. 
●​ Orthrus-ano: Orthrus pipeline without the attack reconstruction step. 

 



 
Figure 3. Node-level detection results of Orthrus and baselines. 

Overall, Orthrus-ano reliably detects at least one node per attack across all datasets, while 
producing fewer false positives than baseline methods. Indeed, a practical system must 
minimize false positives (i.e., ensure high precision) as long as all attacks are detected, rather 
than focusing on identifying every single node involved in an attack (i.e., high recall) [6].  

Orthrus-full builds upon Orthrus-ano’s output to recover additional true positives. It successfully 
enhances attribution while maintaining a low false positive rate, providing a complementary 
output that analysts can leverage for deeper investigation. 

 

Toward More Practical Systems 
Although Orthrus marks progress toward practical detection by substantially reducing analyst 
workload through concise reports, this system and other recent approaches still face limitations 
that hinder real-world deployment. The practicality and usability of PIDSs should matter as much 
as detection accuracy for real-world adoption. To move the field forward, system design must 
prioritize analyst needs so that research prototypes evolve into tools that are truly deployable, 
rather than remaining academic exercises. 

In particular, real-time detection remains challenging, as it would require running inference on 
the provenance graph after every incoming edge, an approach that does not scale with 
increasing numbers of hosts. One way to address this challenge is to significantly simplify the 
architecture, avoiding heavy models such as GNNs. However, many recent works neglect to 
compare their systems against simpler baselines, instead favoring evaluations only against 
equally complex, state-of-the-art approaches. 

Motivated by this gap, we developed a unified framework that re-implements eight 
state-of-the-art PIDSs published in top-tier security venues. The framework is modularized to 



support combinatorial exploration of architectural components, enabling systematic 
benchmarking of performance across models of varying complexity. 

Through this exploration, we experimented with each PIDS and identified several limitations in 
their design and evaluation strategies. We distill these into nine key shortcomings that, in our 
view, must be addressed for the community to develop and publish more practical systems. 

1.​ Insufficient Detection Granularity: As demonstrated in Orthrus, most systems detect 
attacks at the graph or neighborhood levels, leading to thousands elements to analyze. 

2.​ Missing Metric to Measure Attack Detection: Traditional metrics don’t account for 
individual attacks and are biased toward thresholding: Systems rely on fixed, arbitrary 
and manually set thresholds that fail to adapt dynamically. 

3.​ Impractical Thresholding Methods: Systems rely on fixed, arbitrary and manually set 
thresholds that fail to adapt dynamically. 

4.​ Unfair Comparison with Baselines: Evaluation baselines are left untuned, while 
proposed systems are typically extensively tuned. 

5.​ Not Measuring Instability: The detection performance of systems is extremely unstable 
under identical configurations. 

6.​ Featurization Methods Trained on Test Data: Some systems train on test data, leading 
to data snooping by exploiting information that would be unavailable in practice. 

7.​ Overly Complex Architectures: Systems are usually complex, yet they are rarely 
compared to much simpler models. 

8.​ Insufficient Scalability: Systems do not meet scalability and overhead requirements for 
a practical deployment. 

9.​ Lacking Real-Time Detection: Systems are poorly fitted for real-time setting due to 
their design and overhead. 

Some shortcomings (1–6) can be addressed within existing PIDSs through more thorough 
experimentation or simple architecture modifications. In contrast, the last three (7–9) reflect 
deeper structural issues that result in overly complex architectures with poor scalability and 
limited support for real-time detection. 

Exploring Simpler and Lightweight Architectures 
To investigate simpler variants, we conducted extensive experiments totaling more than 453 
days of computation on servers equipped with modern GPUs. We explored a range of new 
architectures by combining components from existing PIDSs and performing ablations to assess 
the impact of removing specific components. All variants were compared against existing PIDS 
baselines, with hyperparameters tuned and the best models selected for evaluation on nine 
DARPA TC and OpTC datasets simulating APT campaigns. Performance was assessed using 
attack detection precision (ADP), a pre-threshold metric that captures the ability to detect all 
attacks while maintaining high precision. 

Surprisingly, our results show that a much simpler architecture not only matches their 
performance but does so with significantly lower runtime and memory overhead. 



This variant, illustrated in Figure 4 and referred to as Velox, is a lightweight alternative to 
heavyweight GNNs and addresses all identified shortcomings by design. When processing an 
edge, it embeds the textual attributes of the source and destination nodes (file paths, process 
command lines, and socket IP addresses) using word2vec. These embeddings are then passed 
to a small neural network trained to predict the system call type associated with each edge. The 
prediction loss becomes the anomaly score, with nodes connected to high-scoring edges 
flagged as anomalous. Detection is performed through automatic thresholding calibrated on the 
validation set. 

 
Figure 4. Neural network architecture of Velox. 

 
 
Figure 5 shows ADP performance alongside runtime and memory usage on the E3-CADETS 
dataset, which contains three attacks (results are equivalent on other datasets).​
In simple terms, ADP balances detection coverage with alert reliability. Formally, it is the area 
under the detected-attacks–precision curve, with ADP = 1 when all attacks are found with 
perfect precision, and ADP = 0 when detection occurs only at near-zero precision. 
 

 
Figure 5. Attack detection precision versus time and memory. Baselines are Velox [3], Orthrus 
[4], NodLink [11], R-Caid [12], Flash [13], Kairos [14], Magic [15], ThreaTrace [16], SIGL [17]. 

 
 

At the node level, only Orthrus and Velox detect all attacks with high precision, reflected in their 
near-perfect ADP scores. The key difference is efficiency: Velox delivers the same detection 
capability as Orthrus but with far lower cost. This proves that, in this domain, simplicity can 
outperform complexity. 
 



These findings are surprising and raise an important question about the growing complexity of 
PIDS architectures: is such complexity always necessary? 
We did not expect APT attacks to be detected so effectively using only the textual attributes of 
system entities. To avoid unnecessary complexity, we advocate for advanced ablation studies 
that empirically demonstrate that the only way to achieve such performance across multiple 
datasets is through integrating all components proposed in the paper. 
Otherwise, simpler variants may exist but remain unexplored. 
 
These results raise another important question: are the DARPA TC and OpTC datasets truly 
realistic benchmarks? Recent work [5] points out that these datasets include synthetic benign 
background activity, which artificially inflates true negative rates, while overly conspicuous 
malicious events inflate true positives. As a result, they reward systems for solving an easier 
problem than what analysts face in practice. Developing datasets that more accurately capture 
the messiness of real-world environments is, therefore, essential if we want PIDS evaluations in 
the literature to reflect genuine progress. 

 

A Unified Framework to Support Future 
Research 

To support the community, we are releasing PIDSMaker [18, 3], an open-source framework that 
unifies eight state-of-the-art systems into a single execution pipeline optimized for modularity 
and computational reuse. PIDSMaker was the foundation for the evaluations in both of our 
papers, and we hope it will serve as a common platform for future research, enabling consistent 
benchmarking and lowering the barrier to developing new systems. 

PIDSMaker’s pipeline (Figure 7) is organized into modular tasks, each with its own arguments. 
Every PIDS is specified in a YAML file that consolidates all relevant parameters, making 
configurations easy to manage and reproduce. Intermediate outputs are cached locally and 
indexed by a hash of the current and preceding task arguments, ensuring that previously 
computed results are not recomputed. 

 

 
Figure 7. PIDSMaker framework’s pipeline. 

 
 
The framework supports a variety of features. 



●​ Combinatorial exploration of components: The framework modularizes components 
from all baseline systems into ready-to-use building blocks, enabling flexible 
combinations. This design supports the creation of new PIDS variants by mixing and 
matching different encoders, decoders, training objectives, and thresholding strategies. 

●​ Consistent Evaluation: All baselines share a common backbone and preprocessing 
pipeline, and are evaluated against the same ground truth, ensuring fair and consistent 
comparisons. 

●​ Hyperparameter Tuning: Since PIDSs are highly sensitive to hyperparameter choices, 
the framework includes a unified tuning module to ensure consistent optimization across 
all baselines. 

●​ Instability Measurement: PIDSs often produce variable results across runs. The 
framework supports repeated executions and quantifies instability using standard 
deviation metrics, providing a robust measure of variance. 

We welcome researchers to contribute their systems to PIDSMaker and join us in extending and 
keeping the framework up to date. 
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