
Sometimes Simpler is Better: A Comprehensive Analysis of State-of-the-Art
Provenance-Based Intrusion Detection Systems

Tristan Bilot123†, Baoxiang Jiang4†, Zefeng Li5, Nour El Madhoun2,
Khaldoun Al Agha1, Anis Zouaoui3, Thomas Pasquier5

1Université Paris-Saclay, 2LISITE, Isep,3Iriguard,
4Xi’an Jiaotong University, 5University of British Columbia

Abstract
Provenance-based intrusion detection systems (PIDSs) have
garnered significant attention from the research community
over the past decade. Although recent studies report near-
perfect detection performance, we show that these systems
are not viable for practical deployment. We implemented
eight state-of-the-art systems within a unified framework and
identified nine key shortcomings that hinder their practical
adoption. Through extensive experiments, we quantify the
impact of these shortcomings using cybersecurity-oriented
metrics and propose solutions to address them for real-world
applicability. Building on these insights, we demonstrate that
most existing systems add unnecessary complexity, whereas
a simple neural network reaches state-of-the-art detection on
eight of nine DARPA datasets while offering a lighter, faster,
and real-time detection solution. Finally, we highlight criti-
cal open research challenges that remain unaddressed in the
current literature, paving the way for future advancements.

1 Introduction

Provenance-based security techniques have gained popular-
ity within the security community over the last decade (see
Fig. 1). Various works have focused on capturing and repre-
senting a system execution as graphs [1–25], analyzing those
graphs to identify malicious behavior [26–55], and detecting
anomalies to build Provenance-based Intrusion Detection Sys-
tems (PIDSs) [56–80]. In this paper, we perform an in-depth
study of this latter category.

While earlier systems [56, 71, 72] relied on relatively
simple techniques to detect changes in the statistical prop-
erties of graphs to identify anomalies, Graph Neural Net-
works (GNNs) have seen broad adoption in more recent
works [57–67, 80]. Although these systems adopt similar ar-
chitectures (see Fig. 2), they often introduce multiple complex
modifications. Furthermore, evaluation methodologies across
studies are often inconsistent, with ablation studies rarely

†Work partially completed while at the University of British Columbia.

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

5

10

15

Figure 1: Provenance-security papers published over the last
decade (at the time of submission) in ■ USENIX Security [4–
8, 34–37, 58, 61, 65, 69, 80, 82–84], ■ ACM CCS [10–12,
38, 39, 85–88], ■ NDSS [2, 3, 27–33, 56, 57, 60, 68, 89], ■
IEEE S&P [13, 26, 40–42, 62, 64, 66, 67, 90, 91] and ■ other
venues [18–25, 44–55, 59, 70–79, 92–96].

performed [80]. As a result, extracting actionable insights
to develop practical PIDS solutions is challenging and faces
significant barriers to real-world adoption [81]. Through this
study, we aim to shed light on the technical barriers hindering
wider adoption.

We identify eight state-of-the-art PIDSs with publicly avail-
able source code (§2.2) and conduct a thorough analysis of
their architecture, design, and evaluation strategies.1 Through
experiments (§4), we identify nine key shortcomings, pinpoint
the systems affected by each, and propose solutions. We per-
form an in-depth evaluation of all eight systems and identify
future research direction.

Our results challenge the prevailing reliance on complex
GNN architectures in the literature, showing that a simple neu-
ral network not only surpasses these systems in eight of nine
benchmarks but also achieves this with significantly lower
computational cost. This highlights that the performance gain

1For transparency, we acknowledge that our own works – SIGL [58],
Kairos [62], and Orthrus [80] – are not exempt from these shortcomings and
are included in our study.

1

attributed to different GNN architectures in the literature is
significantly overestimated. We aim for this study to provide
a foundation for the development of improved evaluation pro-
tocols and to facilitate the adoption of practical PIDSs.

Contributions
• We systematically study eight state-of-the-art PIDSs and

identify the differences in their design.
• We conduct a number of experiments, leveraging standard

benchmark datasets, to identify and highlight nine short-
comings.

• Building on the insights from those experiments, we build
VELOX, a lightweight PIDS, able to outperform state-of-
the-art systems in eight out of nine well-established bench-
marks.

• We discuss the implication of those findings and highlight
open research challenges.

• We release VELOX and a framework implementing eight
state-of-the-art PIDSs [58–62,66,67,80] to serve as evalua-
tion baselines in future work (see §3 and §8).

2 Background

Provenance graphs are an essential tool for monitoring and an-
alyzing system behavior. They capture interactions between
operating system entities like processes, files, and sockets.
These graphs evolve dynamically as the system operates, pro-
viding a temporal record of execution that reflects the causal
relationships between entities.

By representing interactions as directed edges with rich
attributes like process commands, file paths and IP addresses,
provenance graphs naturally lend themselves to machine
learning analysis [97]. GNNs have notably emerged as a
leading approach for learning complex attack patterns for Ad-
vanced Persistent Threat (APT) detection [80, 98]. Typically,
streams of system events are converted into fixed-duration
graphs, which are then processed by GNN models. Due to the
scarcity of labeled attack data, most PIDSs rely on anomaly-
based, self-supervised methods. These systems train exclu-
sively on benign activity, learning to predict graph properties
such as node or edge types. During inference, models assign
low anomaly scores to benign behaviors and high scores to
suspicious ones. Final decisions are made using thresholds
or clustering techniques at the node, neighborhood, or graph
level.

2.1 Study Motivation
PIDSs have shown significant promise as an effective and
innovative tool for host-based intrusion detection. Recent
works (Fig. 1) have consistently demonstrated their capability
to detect advanced attacks and threats that evade traditional
detection methods. Despite these satisfactory results, a gap

exists between academic research and industrial requirements
for existing systems.

In a previous study on provenance-based endpoint detec-
tion and response (P-EDR) systems [81], all 10 interviewed
technical managers identified high client-side overhead as a
significant challenge. Additionally, 7 out of 10 reported an
excessive number of alarms, despite unanimous agreement
(10/10) that provenance-based EDRs are more effective than
traditional EDRs due to the superior interpretability of prove-
nance graphs and their ability to be abstracted to higher-level
representations [99, 100].

Since then, the size and complexity of systems in the litera-
ture have steadily grown, favoring anomaly detection meth-
ods based on complex GNNs. While these systems now re-
port fewer false alarms [80], their increasing complexity has
compromised practicality in several other aspects. This study
experimentally identifies the key shortcomings of state-of-the-
art PIDSs that hinder their practical adoption, representing, to
our knowledge, the first study of its kind.

2.2 Considered Systems
We reviewed anomaly-based PIDSs from the past decade and
identified a recent architectural shift from traditional to GNN-
based systems. Among these systems, common components
were systematized and integrated into a framework (§3) to
support our experiments. We selected recent systems sharing
compatible architectures, prioritizing those with open-source
implementations or sufficient details for re-implementation.
The selected PIDSs are detailed in Table 1, alongside their
modularized architectures. We excluded other candidate sys-
tems, such as SHADEWATCHER [64] and PROGRAPHER [65],
due to the absence or partial availability of their source code.
Additionally, CAPTAIN [63] was excluded as its architecture
is incompatible with the modular components outlined in
Table 1.

The remainder of this section reviews the key contributions
of the PIDSs considered in this study, six of which have been
published in the last year.
■ SIGL (USENIX Sec’21) [58]. Formalizes malicious soft-
ware installation detection as a malware detection task based
on provenance graphs. Proposes a Graph LSTM-based au-
toencoder architecture aiming to reconstruct process nodes’
features, utilizing the loss as anomaly score for downstream
thresholding.
■ THREATRACE (IEEE TIFS’22) [59]. Detects attacks at
the level of node neighborhoods using a multi-model frame-
work based on GraphSAGE. Flags a neighborhood as mali-
cious if it is misclassified by any of the sub-models.
■ NODLINK (NDSS’24) [60]. Aims to improve APT detec-
tion granularity and reduce false positives by detecting attacks
at the node level, modeling APT detection as a Steiner Tree
Problem (STP).
■ MAGIC (USENIX Sec’24) [61]. Learns node embeddings

2

System Feature Extraction Graph Transforma-
tion

Featurization Encoding Decoding Optimization Detection Open-Source

■ SIGL process: path; file: path; netflow:
IP

word2vec + random
walks + alacarte

Graph LSTM 2-layer MLP Node features reconstruction Validation set based thresh-
old

✗

■ THREATRACE nodes: node type+distribution of
edge types

GraphSAGE Node type prediction + retraining Fixed threshold ✔

■ NODLINK process: cmd line; file: path; net-
flow: IP + port

Undirected graph FastText Weighted sum of neigh-
bors

Variational Auto Encoder
(VAE) + 3-layer MLP

Node features reconstruction Validation set based thresh-
old (90th percentile)

✔

■ MAGIC nodes: node type; edges: edge
type

Simple graph with
no redundant edges

GAT GAT + 2-layer MLP Masked node embedding recon-
struction + edge prediction

Outlier detection with K-D
tree + fixed threshold

✔

■ KAIROS process: path; file: path; netflow:
IP + port

Hierarchical feature
hashing (HFH)

TGN+graph attention 4-layer MLP Edge type prediction Fixed threshold ✔

■ FLASH process: cmd line, path; file: path;
netflow: IP + port

Word2vec + positional
encoding

GraphSAGE XGBoost Node type prediction Fixed threshold ✔

■ R-CAID process: path+process name Pseudo-graph with
connected root cause

Doc2vec GAT Node type prediction K-Means + Mean Absolute
Deviation (MAD)

✗

■ ORTHRUS process: type+path+cmd line; file:
type+path; netflow: type+IP+port

Word2vec TGN w/o memory+graph
attention

3-layer MLP Edge type prediction Validation set based thresh-
old + K-Means

✔

Table 1: Systemization of PIDSs selected in this study. All systems were modularized into components within a unified framework
to enable efficient experimentation.

using an hybrid loss function and performs neighborhood-
level APT detection by measuring the similarity of embed-
dings to their neighbors, producing an anomaly score for
thresholding.
■ KAIROS (IEEE S&P’24) [62]. Captures the temporal
dynamics of system events using a Temporal Graph Network
(TGN) on dynamic provenance graphs. Detects APTs at the
batch level by computing anomaly scores for edges via edge
type prediction.
■ FLASH (IEEE S&P’24) [66]. Performs neighborhood-
level attack detection by computing node-level anomaly
scores from text embeddings using a lightweight encoder/de-
coder to predict node types.
■ R-CAID (IEEE S&P’24) [67]. Transforms provenance
graphs into a pseudo-graph, connecting each node to its root
cause, leveraged during embedding. Detects anomalies by
measuring the deviation of nodes to clusters.
■ ORTHRUS (USENIX Sec’25) [80]. Improves detection
granularity by detecting attacks at the node level using a
lightweight TGN variant. Reduces false positives by applying
a K-Means clustering on top of thresholded nodes.

3 Experimental Framework & Setup

Framework. We developed a unified framework that con-
solidates the eight PIDSs outlined in Table 1 into a single
codebase. This framework allows for extensive customiza-
tion by enabling the integration of components from different
systems for complex analyses and ablation studies. To ac-
complish this, the original PIDS codebases were modularized
into seven distinct components, ranging from “Feature Extrac-
tion” to “Detection”, and adapted into an abstract architecture
compatible with the framework. Wherever possible, the orig-
inal code was optimized with GPU-accelerated operations
and refactored following coding best practices to improve
maintainability. Each system is configured via its own YAML
file, specifying system-specific parameters. Given the signif-
icant computational demands of the extensive experiments
presented in this study, efficient resource usage was critical,

especially under limited CPU and GPU availability. To min-
imize redundancy, the framework utilizes a pipeline system
(Fig. 2) that automatically reuses previously computed com-
ponents and leverages existing results whenever possible. The
framework was implemented primarily using PyTorch and
PyTorch Geometric, consisting of 82 Python files and a total
of 14,811 lines of code.
Datasets. The experiments in this study utilize the widely
adopted DARPA E3 [101] and DARPA E5 [102] datasets,
with ground truth provided by Jiang et al. [80]. For the final
evaluation (§5), we also benchmark systems on the DARPA
OpTC [103] dataset, following the same labeling method-
ology outlined by Jiang et al. [80]. Additional details and
statistics about these datasets can be found in Appendix A.
Re-implementation. The re-implementation of systems
within the framework primarily reuses components from their
original public repositories. Common steps—such as snapshot
construction and training loops—are largely shared across
systems and thus abstracted without system-specific logic.
For the specialized components listed in Table 1, we integrate
the original code modularly. We allow easy swapping through
YAML configuration.

For ■ SIGL and ■ R-CAID, which are not open source,
we re-implemented components based on their papers. Conse-
quently, any issues observed in our re-implementations may
not reflect limitations of the original systems, but rather stem
from misunderstandings or implementation details not dis-
closed in the corresponding papers.
Reproduction Efforts. We provide details of our reproduc-
tion efforts in Appendix B. The experiments follow the orig-
inal evaluation methodology and use the DARPA datasets
referenced in the respective papers. Reproducibility issues
primarily stemmed from missing code, data, or labels. When
all these artifacts were available, our reproduction attempts
were generally successful. We point interested readers to a
full reproducibility study [104].
Hardware setup. All training and evaluation were performed
on three servers running Ubuntu 22.04, each equipped with a
3.2GHz 64-core AMD EPYC 7343 CPU, 1TB of RAM, and
an NVIDIA GA100 GPU featuring 80GB of memory. The

3

Feature Extraction Graph Transformation Featurization
Graph Encoding

Decoding
Optimization

Node Detection

Kairos Run Run Run Run Run

Kairos + ⇔ Featurization Skip Skip Run Run Run

Run n ° / Description

1.

2.

Kairos + ⇔ Graph Transformation Skip Run Run Run3.

#h1 #h2
write to read from #h3 #h4

#h5

Run

Kairos + ⇔ learning rate4. Skip Skip Run RunSkip

Kairos + ⇔ threshold5. Skip Skip RunSkip Skip

#h1=hash(args1) #h2=hash(#h1, args2)

pass arguments from YAML file

args1 args2 args3 args4 args5

#h3=hash(#h2, args3) #h4=hash(#h3, args4)
#h5=hash(#h4, args5)

feature_extraction:

args1

graph_transformation:

args2

featurization:

args3

graph_learning:

args4

node_detection:

args5

Pipeline

Figure 2: PIDS execution pipeline. Each PIDS is divided into tasks with configurable arguments specified in a YAML file. Task
outputs are saved in uniquely hashed folders, with the hash derived from the task’s arguments and the preceding task’s hash.
Changing an argument thus updates the hash and restarts the pipeline from the modified task onward. This approach minimizes
redundant computations and supports efficient experimentation with time-intensive PIDSs. “⇔” indicates a modification in a
task or in a hyperparameter value, “#i” refers to the hashed folder of a task.

System Detection Granularity Level
■ SIGL Graph Low ✗
■ THREATRACE Neighborhood Low ✗
■ MAGIC Neighborhood Low ✗
■ KAIROS Batch Low ✗
■ FLASH Neighborhood Low ✗
■ R-CAID Descendant process nodes Low ✗
■ NODLINK Process nodes High ✔
■ ORTHRUS Node High ✔

Table 2: Detection granularity of studied systems.

experiments in this paper required 453 days of computation.

4 Shortcomings

In this section, we identify nine shortcomings that prevent the
practical deployment of state-of-the-art systems. We illustrate
those shortcomings through experiments on the eight systems
presented in §2.2 and perform a comprehensive evaluation of
all systems in §5.

SC1: Insufficient Detection Granularity

Most systems detect attacks at the granularity of entire
graphs or node neighborhoods, often overwhelming
analysts with thousands of elements to review [80],
leading to burnout and reduced practicality [81, 105].

6/8 systems

A recent survey of industry professionals indicates that
analysts typically expect to investigate between 10 and 100

nodes when analyzing a malicious provenance graph [81].
However, Table 2 shows that most recent systems detect at-
tacks at the level of neighborhoods, batches or entire graphs,
resulting in an overwhelming number of nodes for analysts to
examine [80].

This outcome is largely driven by the evaluation methods
and labeling strategies employed by these systems, which
inflate performance by labeling an excessive number of
nodes as malicious, rather than accurately pinpointing the
nodes directly involved in the attack. This approach leads
to the development of impractical systems [80]. For exam-
ple, the neighborhood-based ground-truth labeling used by
■ THREATRACE —and adopted by other systems such as
■ MAGIC and ■ FLASH —assumes that all nodes within a
2-hop neighborhood of a known malicious node contribute to
the attack. This includes cases where unrelated nodes, such
as a process loading the same shared library as a malicious
process, are also considered malicious. This artificially in-
flates the number of nodes labeled as malicious. Similarly,
batch-based and descendant-based approaches overestimate
the number of malicious nodes by orders of magnitude. Jiang
et al. [80] investigate this issue in more detail.

In contrast, node-level detection, as performed by ■ OR-
THRUS and ■ NODLINK, identifies a limited set of anomalous
nodes. A smaller anomaly set simplifies analysis and facil-
itates attack reconstruction to uncover additional malicious
patterns in the graph [37]. This approach represents a prac-
tical evaluation methodology aligned with security analysts’
needs [81]. In the rest of this study, we conduct the experi-
ments with node-level detection granularity.

Recommendations. As outlined by Jiang et al. [80], authors

4

(a) Predicted node anomaly scores of ■ ORTHRUS (top), ■ NODLINK

(middle) and ■ KAIROS (bottom). Red, black, and blue nodes refer to
malicious nodes from distinct attacks, whereas green nodes are benign.
Horizontal lines represent thresholds computed by each system.

(b) Area under the precision-
recall curve (AP).

(c) Area under the Attack Detec-
tion Precision curve (ADP).

Figure 3: Comparison of AP and ADP on the predicted scores
of ■ ORTHRUS, ■ NODLINK and ■ KAIROS on E3-CADETS.

should consider adopting node-level or edge-level detection
when evaluating PIDSs to ensure results are actionable and re-
duce analyst fatigue. They should avoid evaluation strategies
that artificially inflate performance, such as labeling entire
neighborhoods or descendant nodes as malicious.

SC2: Missing Metric to Measure Attack Detection

Most evaluations use post-threshold metrics like preci-
sion and recall, which overlook predictive power, misat-
tribute poor performance, and are unsuitable for multi-
attack detection.

7/8 systems

State-of-the-art PIDSs detect malicious elements by first
assigning it an anomaly score, then separate these elements in
two classes: benign and anomaly, based on their scores. Some
systems, such as ■ SIGL, ■ THREATRACE, ■ NODLINK,
■ KAIROS, and ■ FLASH, employ thresholding methods,
labeling elements as malicious if their scores exceed a

predefined threshold. In contrast, other systems, including
■ MAGIC, ■ R-CAID, and ■ ORTHRUS, utilize more sophis-
ticated relative thresholds, flagging elements as anomalous if
their scores deviate significantly from clusters.

Past evaluations report performance using post-threshold
metrics such as precision, recall, F1-score, and accuracy. How-
ever, these metrics have two key limitations when comparing
detection systems: (1) they assess performance at a single
decision threshold, which can bias results depending on the
thresholding strategy used; and (2) they treat all true positives
equally, failing to account for the presence of multiple distinct
attacks, as observed in the DARPA TC and OpTC datasets.

Fig. 3a presents the anomaly scores generated by ■ OR-
THRUS, ■ NODLINK and ■ KAIROS, where each “dot” repre-
sents the score of a node in the graph. ■ ORTHRUS separates
some nodes corresponding to all three attacks (the rightmost
blue, red and black nodes),■ NODLINK separates nodes from
two of the three attacks (red and blue nodes), and ■ KAIROS
cannot do so. The insights revealed by such visualizations
are easily overlooked when relying solely on post-threshold
metrics. They depend on a fixed threshold (represented here
as the horizontal line) and do not capture the distribution of
anomaly scores, biasing results toward systems with good
threshold selection. For example, ■ ORTHRUS’ threshold is
remarkably well-chosen as it precisely includes one node per
attack while excluding the highest benign ones (we discuss
why in SC3). In contrast, ■ NODLINK’s threshold is too
low, resulting in many false positives and metrics that do not
reflect the potential ability of the system. In short, relying
exclusively on metrics such as precision and recall conflates
detection quality with the separate and complex problem of
threshold calibration, a process that often requires dedicated
optimization [106].

Metrics such as AUC-ROC and Average Precision (AP)
address limitation (1) by using the full distribution of anomaly
scores, avoiding the need for a fixed threshold. However, they
do not address limitation (2), as they are not designed for
multi-attack scenarios, which are common in intrusion de-
tection datasets. A PIDS should prioritize detecting each
attack and ensuring alerts correspond to real attacks (pre-
cision), rather than trying to identify every malicious node
(recall) [81]. Indeed, this reduces alert fatigue [81, 105] and
past works have shown that attacks can be reconstructed from
a few correctly detected nodes [28, 37, 80, 91].

In addition, AUC-ROC can give an overly optimistic view
in highly imbalanced datasets [107], which is typical in in-
trusion detection. AP also tends to emphasize recall over
precision, as systems with low recall will consistently yield
low area under the precision-recall curve and thus low AP.
This can be misleading in scenarios where precision is the pri-
mary concern. As illustrated in Fig. 3b, ■ NODLINK receives
a near-zero AP despite its ability to clearly distinguish cer-
tain attacks from benign behavior. In short, standard metrics
can misrepresent performance when precise attack detection

5

matters more than finding every malicious node. This is par-
ticularly true in heavily imbalanced settings.
Attack Detection Precision (ADP). Building on require-
ments (1) and (2), we propose the Attack Detection–Precision
(ADP) curve, which plots the percentage of attacks detected
(y-axis) against node-level precision (x-axis). Fig. 3c shows
the ADP curve for ■ NODLINK, derived from Fig. 3a. It in-
dicates that when detecting 66.6% of attacks (2 out of 3 on
E3-CADETS), ■ NODLINK achieves 100% precision. How-
ever, detecting all attacks (100%), including the rightmost
black node, reduces the best-case precision to approximately
80%, as some benign green nodes must also be included.

We distill this curve into a single scalar metric to facilitate
comparison of systems. We compute the area under this curve,
referred to as ADP throughout the paper.

ADP =
∫ 1

0
D(p)d p, (1)

where D(p) computes the percentage of detected attacks at
precision p, defined by:

D(p) =
|{Ai | Ai ∩R(p) ̸= /0}|

k
, (2)

where Ai is the set of nodes in attack i among the total k attacks
and R(p) is the set of nodes flagged at precision p. The ADP
metric directly measures the predictive power of PIDSs across
multiple attacks, independent of post-processing or thresh-
olding, thus addressing limitations (1) and (2). In practice,
■ KAIROS achieves an ADP score of 0.01, ■ NODLINK 0.96,
and ■ ORTHRUS 1.00. These results are consistent with the
observations in Fig. 3a. ADP offers a useful way to evaluate
detection potential without relying on threshold selection.
Recommendations. Authors should measure and report the
predictive power of detection pipelines independently of
thresholding, as demonstrated in Fig. 3. We propose ADP
to fulfill this objective, and encourage the community to ex-
plore this issue further.

SC3: Impractical Thresholding Methods

Certain systems employ thresholding methods
unsuited to practical settings. Some rely on fixed,
arbirtraty and manually set thresholds that are
hard to adapt to different environments, while
others use clustering techniques that make as-
sumptions about attack presence and depend
on future data, leading to data snooping [108].

5/8 systems

Determining an effective thresholding method is challeng-
ing, as it requires separating benign and anomalous instances
within the anomaly score space (Fig. 3a) to maximize true
positives while minimizing false positives.

Systems such as ■ THREATRACE, ■ MAGIC, ■ KAIROS,
and ■ FLASH rely on manually determined fixed thresholds

Figure 4: Precision of■ ORTHRUS with its original validation-
based thresholding with clustering (data snooping) vs. thresh-
olding only (non-snooped).

for detection. This approach is fundamentally flawed for two
reasons: (1) identifying the optimal threshold involves iter-
ative “trial and error” adjustments on the test set, leading
to data snooping [108, 109], where information that would
be unavailable in realistic deployment scenarios is utilized,
and (2) fixed thresholds lack adaptability, fail to generalize in
dynamic environments and fail against concept drift [110].

Alternatively, ■ ORTHRUS identifies outliers during in-
ference by applying both a threshold and a clustering-based
method directly to predicted scores. However, such techniques
are also problematic: (1) they require full knowledge of the
test data, as clustering is typically performed post-inference
on all or part of the test set, also leading to data snooping,
and (2) they assume the presence of malicious elements, as
clustering methods inherently identify outliers in the anomaly
score space.

In contrary, ■ R-CAID avoids data snooping by applying
K-Means clustering to the training data only, with node scores
during inference assigned using Median Absolute Deviation
(MAD). Similarly, ■ SIGL and ■ NODLINK prevent data
snooping by employing a thresholding method computed
using the validation set, which contains no labeled examples,
ensuring the separation of test data from training. Fig. 4 shows
that applying such thresholding to ■ ORTHRUS significantly
lowers precision, even reaching 0% on E3-CLEARSCOPE.
Recommendations. Authors should ensure that the threshold
selection methods do not rely on data unavailable in realistic
deployment scenarios (i.e., avoid data snooping [108]). Ad-
ditionally, they should consider using threshold-independent
metrics, such as ADP.

SC4: Unfair Comparison with Baselines

Studies commonly omit hyperparameter tuning for
baseline systems, despite the sensitivity of PIDSs
to these settings, relying instead on default hyper-
parameters often obtained in a very different exper-
imental setup. This practice leads to unfair com-
parison between well-tuned and untuned systems.

6

Figure 5: Comparison of best ADP (across five iterations) for
tuned systems (original color) and untuned systems (lighter
color) on E3-CADETS.

8/8 systems

Hyperparameters play a key role in the performance of
PIDSs. They are tightly linked to the underlying topology
and density of graphs. For instance, the size of a graph batch
of fixed duration depends on the volume of system events
recorded on the host. On E3-CADETS and E5-CADETS, the av-
erage number of edges for a 15-minute batch is 5620 and
161,849, respectively (see Appendix A). However, graph size
significantly influences the learning task, as larger graphs can
lead to over-squashing, where the GNN encoder struggles to
compress excessive information into a node embedding [111].
Likewise, increased training data requires the model to en-
code more information, which further affects embedding size.
Since hyperparameters are sensitive to varying characteristics,
thorough tuning is essential. This practice should extend to
baselines as well as the authors’ proposed systems. In the
literature, none of the eight studied systems mention tuning
baselines before evaluation. Fig. 5 shows the impact overlook-
ing tuning has on attack detection performance.

In this study, we ensure a fair and accurate evaluation by
consistently tuning all benchmarked systems. However, hy-
perparameter tuning can be particularly resource-intensive, as
it requires running each experiment multiple times – a process
further complicated by the inherent instability of PIDSs (see
SC5). In the PIDS literature, hyperparameter tuning often
relies on test data, meaning reported values reflect system
performance under idealized conditions. To the best of our
knowledge, tuning PIDSs without prior knowledge of the
attacks remains an unresolved challenge.
Recommendations. As emphasized in prior work [108], all
evaluated systems should be properly tuned for the specific
task under evaluation. The effort invested in hyperparameter
selection for baseline systems should match that applied to
the authors’ own approach to ensure fair and meaningful
comparisons.

SC5: Not Measuring Instability

Our experiments show that all systems exhibit predic-
tive instability [112,113] under identical configurations,

despite the need for consistent IDS decisions. This phe-
nomenon, driven by random factors like weight ini-
tialization, is largely overlooked in existing studies.

8/8 systems

Assessing the instability of a PIDS is crucial for evaluating
the consistency of its predictions and the reliability of the
system. High instability leads to widely varying predictions
from the same system on identical data, undermining analyst
confidence and real-world adoption. Despite its importance,
the instability is not measured in any past study.

To quantify system instability, we adapt the uncertainty
measurement method from Lakshminarayanan et al. [114]
to PIDSs. This involves running a well-tuned system with
identical configuration and input across multiple iterations
and measuring the ADP for each iteration. Experiments are
run for T = 5 iterations with different seeds. Each experi-
ment starts from the “Featurization” task of the pipeline to
ensure that both the text embeddings and GNN embeddings
are trained with a different initialization.

To measure instability, we introduce the relative ADP stan-
dard deviation, noted σ̃ADP, which quantifies the variability
of ADP scores from the mean across all iterations.

σ̃ADP =
σADP

ADP
×100, (3)

where σADP is the standard deviation of ADP across the T
iterations and ADP is the mean of these scores.

We run each system on all datasets for five iterations and
report the min, max and mean ADP scores in Fig. 6, along
with σ̃ADP as per Equation 3 in Fig. 7. The results reveal
significant variability in ADP scores across most systems
when identical experiments are repeated, with deviations from
the mean often approaching 100%. For instance, running
■ ORTHRUS on E3-THEIA yields ADP values ranging from
1.00 in the best case to below 0.1 in the worst case.

We hypothesize that this instability stems from the random
initialization of weights and other sources of variation across
iterations [113]. Enhancing system robustness to such instabil-
ity poses significant challenges, requiring further research to
improve existing methodologies [115,116]. Potential research
directions are detailed in §6.

Instability is critical during both the research and produc-
tion phases of PIDS development. Accordingly, we recom-
mend averaging metrics over multiple iterations, a practice
we adopt throughout this paper.
Recommendations. The authors should account for the in-
herent instability of their system by repeating the entire eval-
uation pipeline multiple times and reporting the average and
standard deviation of metrics, as is standard practice in the
machine learning literature [117, 118].

7

Figure 6: ADP range of tuned systems across five iterations.
A bar spans the minimum to maximum ADP, with a dot in-
dicating the mean. Runtime and memory errors are marked
with a red cross.

Figure 7: σ̃ADP across five iterations on all datasets. Runtime
and memory errors are marked with a red cross.

SC6: Featurization Methods Trained on Test Data

Some systems use text embeddings that cannot
handle unseen words during inference. Mitiga-
tion involves either incorporating test data, lead-
ing to data snooping [108], or substituting unseen
words with zero-vectors, whose impact is unclear.

1/8 systems

Text embedding-based featurization methods are widely
employed in PIDSs, as evidenced by six out of the eight sys-
tems analyzed in this study. Understanding their limitations
and evaluating their necessity for detection are important.

Inductive methods like word2vec+alacarte (■ SIGL), Fast-
Text (■ NODLINK), and HFH (■ KAIROS) are trained on
a defined vocabulary and can infer embeddings for Out-Of-
Vocabulary (OOV) words. Conversely, transductive methods
like word2vec (■ FLASH, ■ ORTHRUS) and Doc2vec (■ R-
CAID) either learn embeddings from the entire dataset to
avoid OOVs (■ ORTHRUS) or substitute OOV words with
zero-vectors (■ FLASH, ■ R-CAID). However, training on
test data introduces data snooping.

To understand the impact of training on training data versus
the full dataset, we evaluate the detection performance of
different featurization methods under both scenarios in Fig. 8.

Figure 8: Comparison of ADP for tuned systems using dif-
ferent featurization methods trained on training set (original
color) and full dataset (light color). For a fair comparison of
methods, all experiments use ■ ORTHRUS’ text features (Ta-
ble 1, “Feature Extraction”) as input. Each experiment runs
with embedding sizes of 32, 128, and 256, reporting the mean
ADP of the best size across five iterations.

■ FLASH’s word2vec with positional encoding is excluded
due to similar results to standard word2vec but much higher
runtime.
How important are text embeddings for detection? To
address this, we evaluate each system without text embed-
dings, using one-hot encoded system entity types as node
features (the only type method in Fig. 8). The consistently
lower scores relative to text embedding methods highlight the
critical role of capturing textual semantics from file paths, pro-
cess command lines, and network flows. Notably, systems like
■ THREATRACE and ■ MAGIC, which original design lack
text embeddings, demonstrate significant detection improve-
ments when certain text embedding methods are applied.
What is the effect of training on test data? Intuitively, train-
ing text embeddings on test data might inflate performance, as
the test distribution is incorporated and all words are included
in the vocabulary. However, as shown in Fig. 8, training on test
data provides minimal advantage in top-performing experi-
ments, even for transductive methods. Notably, these methods
perform well when trained solely on training data, replacing
unknown words with zero-vectors. Computationally expen-
sive methods to handle OOV words appear unnecessary.
Recommendations. Authors should ensure that text embed-
ding strategies do not introduce data snooping [108]. Em-
bedding models should be trained exclusively on training
data, and the handling of out-of-vocabulary tokens should be
discussed and empirically validated.

SC7: Overly Complex Architectures

PIDSs are complex, with multiple interacting compo-
nents, yet without ablation studies, it is unclear if sim-
pler architectures could achieve similar performance.

8/8 systems

The absence of detailed ablation studies introduces un-

8

Figure 9: Grid-search ablation study conducted from ■ ORTHRUS with four different Featurization methods and various encoders
and objectives. Reported numbers are the mean ADP across five iterations. Each cell comprises the values of an experiment on
datasets E3-CADETS, E3-CLEARSCOPE and E3-THEIA.

certainty about the essential components of an architecture.
Overly complex designs increase the risk of overfitting, as
well as runtime and memory overhead, attack surface, and
deployment costs [108]. Moreover, ablation studies play a
key role in guiding future research by identifying the most
valuable components for reuse in empirical work.

To identify the critical components of high-performing sys-
tems and develop a more streamlined model, we conduct a
series of ablation experiments, as illustrated in Fig. 9. Be-
ginning with the components of the state-of-the-art system,
■ ORTHRUS, we systematically substitute individual compo-
nents across all possible Objective/Encoder pair combinations
using a grid search approach applied to multiple featurization
methods. To ensure robust evaluation across diverse scenarios,
each ablation is tested on three E3 datasets, with the mean
ADP calculated over five iterations to account for instability,
as described in SC5. Additionally, to avoid data snooping, as
outlined in SC6, all featurization methods are trained exclu-
sively on the training data.
Objective functions. The objective functions analyzed in-
clude edge type prediction, node type prediction, and node
feature reconstruction. Those are all the functions used in the
literature (Table 1).
Encoders. For the encoders, we focus on those utilized in
■ ORTHRUS and ■ NODLINK, chosen for their demon-
strated superior performance in prior experiments (Fig. 6).
■ KAIROS’ encoder is excluded due to its architectural simi-
larity to ■ ORTHRUS and its consistently lower performance.
Additionally, we introduce a new encoder, referred to as “Lin-
ear,” which consists of a single linear layer. This addition is in-
tended to assess the necessity and effectiveness of more com-
plex GNN-based encoders in achieving high performance.
Featurization methods. Finally, the experiments are con-
ducted using four different featurization methods. Fast-
Text (■ NODLINK), Word2Vec (■ ORTHRUS), and HFH
(■ KAIROS) are selected for their optimal balance between
runtime efficiency and detection performance. Additionally,
node types are used as standalone features to assess the impact
of text embeddings on detection accuracy.
Edge type prediction performs better. As illustrated in
Fig. 9, edge type prediction consistently outperforms other
objective functions on average. This superiority can be at-

Figure 10: Neural network architecture of ■ VELOX.

tributed to the higher number of edges relative to nodes in
all datasets (Appendix A), enabling more backpropagation
steps. Furthermore, edge-level decoding inherently models
pairwise node interactions, offering richer semantic learning
than node-level objectives.
A simple linear layer suffices as an encoder. Combining a
linear encoder with Word2Vec achieves the highest ADP on
two out of three datasets, with mean ADPs of 0.91 and 0.77 for
E3-CADETS and E3-THEIA, respectively. Furthermore, pair-
ing the linear encoder with other text embedding methods
also proves effective for attack detection. This unexpected
result suggests that graph-based encoders are not essential for
detecting attacks in these datasets.
Graph structure encodes attack-related semantics. While
text embedding methods achieve higher average ADP scores,
■ ORTHRUS’ and ■ NODLINK’s encoders, relying solely
on node types as features, still successfully detect attacks.
This demonstrates that GNN-based encoders leverage attack-
related semantics directly from the graph structure.
Designing VELOX. Building on the experiments described
above, we propose ■ VELOX, a new system derived from
■ ORTHRUS’ architecture. ■ VELOX replaces the complex
TGN-based encoder with a simple linear model, resulting
in a lightweight and efficient neural network (see Fig. 10).
Text embeddings are generated using word2Vec, following
the methodology outlined in ■ ORTHRUS while addressing
SC6. For each incoming system event, the embeddings of its
two end nodes are retrieved, with OOV tokens replaced by a
zero vector. These embeddings are then passed into the neu-
ral network. First, the end-node embeddings are processed
through a linear layer, which functions as the “Encoding”
component. The subsequent steps align with ■ ORTHRUS’
“Decoding” component: source and destination entity embed-
dings are processed through separate linear layers to capture

9

(a) Encoder training time (b) Featurization training time (c) Time per batch (inference) (d) Peak memory (inference)

Figure 11: Runtime and memory consumption of systems on E3-CADETS with 15 min-batches.

orientation-specific semantics, reflecting the distinct roles of
emitting and receiving nodes in provenance graphs. The pro-
cessed embeddings are concatenated and fed into a two-layer
MLP with non-linear activation, enabling the model to learn
complex patterns. The anomaly score is computed as the cross
entropy between the predicted and actual types of the input
event, evaluated across ten different system calls.
Recommendations. Authors should ensure that any increase
in architectural complexity, and its associated computational
cost, is justified by substantial performance gains. They
should conduct and report ablation studies to isolate the con-
tribution of individual components and validate their impact
on detection performance and computational cost.

SC8: Insufficient Scalability

Some systems have long training times, high inference
costs, or excessive memory use, limiting their practical-
ity in real-world settings where frequent retraining and
low memory footprints (<160MB) are necessary [81].

8/8 systems

Training runtime. The results in Fig. 11a reveal substan-
tial variability in encoder training times, with ■ SIGL’s
RNN incurring particularly high training costs. Simi-
larly, Fig. 11b highlights disparities in featurization train-
ing times. Word2Vec (■ ORTHRUS, ■ VELOX), FastText
(■ NODLINK), and HFH (■ KAIROS) are relatively low-cost
featurization techniques. In contrast, ■ SIGL and ■ FLASH
use word2Vec variants that come at significantly higher costs,
as does ■ R-CAID with Doc2Vec. Interestingly, the choice
of embedding technique had relatively little impact on ■ OR-
THRUS’ performance, as shown in Fig. 8. Minimizing training
time is especially critical for practical IDSs, as they require
frequent retraining to address concept drift [81].
Inference runtime. During inference (Fig. 11c), node-
level systems (■ NODLINK, ■ FLASH, ■ R-CAID, and
■ THREATRACE) are generally faster than edge-level sys-
tems (■ ORTHRUS, ■ KAIROS, and ■ VELOX). This is pri-
marily due to the datasets described in Appendix A, includ-
ing E3-CADETS, which contain significantly more edges than

nodes per 15-minute batch. The complexity of edge-level sys-
tems scales with E (edges) rather than N (nodes), resulting in
increased runtime. However, as shown in SC7, this additional
cost is justified by improved performance. Notably, despite
using an edge-level objective, ■ VELOX achieves efficiency
comparable to the fastest node-level systems. It is 5.7x and
6.8x faster than ■ ORTHRUS and ■ KAIROS, respectively,
due to its simpler architecture.
Memory. Fig. 11d highlights substantial variation in peak
memory usage across the evaluated systems. ■ R-CAID
exhibits particularly high memory consumption due to its
pseudo-graph transformation process.2 Systems such as ■ R-
CAID, ■ NODLINK, ■ SIGL, ■ KAIROS, and ■ ORTHRUS
employ relatively complex GNN architectures. For instance,
the TGN-based encoders in ■ KAIROS and ■ ORTHRUS
require large GPU tensors to facilitate efficient indexing, con-
tributing to their higher memory usage. In contrast, lighter
node-level encoders like those in ■ THREATRACE, ■ FLASH,
■ VELOX, and ■ MAGIC exhibit significantly lower memory
requirements.

All evaluated systems surpass the maximum memory foot-
print of 160 MB suggested in past work [81]. While what
constitutes reasonable performance upper-bound can be de-
bated, we note that ■ VELOX achieves significantly lower
memory usage during real-time detection scenarios, peaking
at only 5.7 MB, as detailed in §5.3.
Recommendations. Authors should measure and report the
computational costs of both training and inference. These
metrics should be discussed in the context of the system’s
intended deployment model to assess its practicality in real-
world settings.

SC9: Lacking Real-Time Detection

Current systems necessitate completing graph
construction prior to inference, restricting detec-

2This task is currently performed post-capture. A mechanism similar to
CamQuery [87] could potentially perform the graph transformation during
capture with minimal overhead. However, to the best of our knowledge, no
such implementation currently exists.

10

System SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9
■ SIGL ✔ ✔
■ THREATRACE ✔
■ NODLINK ✔ ✔ ✔
■ MAGIC ✔
■ KAIROS ✔
■ FLASH ✔
■ R-CAID ✔ ✔
■ ORTHRUS ✔ ✔
■ VELOX ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 3: Shortcomings addressed by systems.

tion to fixed intervals of x minutes. A practical
PIDS should enable near real-time detection.

8/8 systems

In state-of-the-art PIDSs, provenance events are collected
from a data stream, and a graph is constructed every time a
predefined criterion–such as the number of edges or elapsed
time–is met. This graph is then utilized during training and in-
ference. While effective for training, this approach introduces
delays during inference, as detection is performed on data
batches rather than in real-time. For instance, in ■ KAIROS,
detection is conducted at fixed intervals, such as every 15
minutes, requiring the batch to be fully constructed before
inference, which limits its real-time detection capabilities.

An ideal PIDS should have the ability to raise alerts in real-
time as events occur [81]. Achieving this with current state-of-
the-art systems would require constructing a graph for each
newly recorded event. However, the significant computational
overhead of such systems makes this approach impractical.
Despite its critical importance in industry, the application of
GNN-based systems for real-time detection remains underex-
plored. In contrast, ■ VELOX processes events individually,
enabling efficient real-time detection. As demonstrated in §5,
■ VELOX achieves strong detection performance across most
datasets at a fraction of the computational cost. This marks
a departure from the prevailing trend in the literature, which
often prioritizes increasingly complex and resource-intensive
architectures.
Recommendations. Authors should state the detection strat-
egy used by the system (e.g., real-time vs. batched). They
should evaluate and report performance within the context of
that strategy to ensure alignment with practical deployment
requirements.
Summary. Building on the preceding analyses and exper-
iments, Table 3 provides a summary of the shortcomings
addressed by each system.
Addressing shortcomings with VELOX. At the design level,
■ VELOX resolves SC3 by calculating a threshold from the
maximum score encountered in the validation set. SC6 is
addressed by training text embeddings solely on training data.
SC1, SC4, SC5 and SC7 do not necessarily have a clear solu-
tion, we identify and quantify them explicitly through exper-

System ADP σ̃ADP Precision TP FP
Mean Min Best Mean Min Best Best

E3-CADETS
■ SIGL 0.00 0.00 0.01 8% 0.00 0.00 0.00 0 45
■ THREATRACE 0.01 0.01 0.01 36% 0.00 0.00 0.00 26 17k
■ NODLINK 0.33 0.15 0.96 56% 0.00 0.00 0.00 50 55k
■ MAGIC 0.03 0.02 0.06 37% 0.00 0.00 0.00 68 144k
■ KAIROS 0.01 0.01 0.01 24% 0.00 0.00 0.00 0 8
■ FLASH 0.10 0.00 0.34 127% 0.05 0.00 0.25 1 3
■ R-CAID 0.21 0.04 0.44 64% 0.21 0.00 1.00 2 0
■ ORTHRUS 0.94 0.85 1.00 12% 0.66 0.40 1.00 10 0
■ VELOX 0.94 0.77 1.00 9% 0.85 0.44 1.00 8 0

E3-CLEARSCOPE
■ SIGL 0.02 0.01 0.02 6% 0.00 0.00 0.01 3 391
■ THREATRACE 0.02 0.01 0.03 56% 0.00 0.00 0.00 41 35k
■ NODLINK 0.01 0.00 0.03 121% 0.00 0.00 0.00 0 0
■ MAGIC 0.02 0.00 0.03 52% 0.00 0.00 0.00 0 0
■ KAIROS 0.42 0.04 1.00 86% 0.00 0.00 0.00 0 0
■ FLASH 0.03 0.01 0.07 77% 0.00 0.00 0.00 35 23k
■ R-CAID 0.14 0.02 0.50 134% 0.03 0.00 0.08 15 169
■ ORTHRUS 0.75 0.25 1.00 42% 0.00 0.00 0.00 1 399
■ VELOX 0.30 0.02 1.00 116% 0.00 0.00 0.00 1 913

E3-THEIA
■ SIGL 0.30 0.25 0.50 33% 0.18 0.10 0.33 1 2
■ THREATRACE 0.03 0.01 0.10 143% 0.00 0.00 0.00 118 701k
■ NODLINK 0.24 0.00 0.50 90% 0.00 0.00 0.00 24 199k
■ MAGIC 0.00 0.00 0.00 0% 0.00 0.00 0.00 74 196k
■ KAIROS 0.45 0.25 0.50 22% 0.70 0.50 1.00 2 0
■ FLASH 0.02 0.01 0.05 99% 0.00 0.00 0.00 3 8.2k
■ R-CAID
■ ORTHRUS 0.44 0.10 1.00 73% 0.24 0.07 1.00 8 0
■ VELOX 0.72 0.42 0.97 30% 0.53 0.03 0.91 10 1

Table 4: Detection results on E3 datasets. Rows in gray indi-
cate timed-out or failed experiments.

iments. Finally, SC8 and SC9 are addressed by the intrinsic
lightweight and real-time nature of ■ VELOX.

5 Systems Comparison

In this section, we compare all eight systems while consider-
ing the shortcomings presented in §4.

5.1 Detection Performance

We perform node-level detection, consistent with SC1. Ta-
ble 4, Table 5, and Table 6 show the results. We note that
most systems were not designed with node-level detection in
mind (■ NODLINK and ■ ORTHRUS are the only systems
designed for such a task).
Experimental setup. To ensure fair evaluation, both training
and thresholding exclude test data as per SC3 and SC6. For
■ ORTHRUS, this involves training word2Vec on training data
and using a validation-based threshold solely for detection.
As in previous experiments, all systems were tuned following
the guidelines detailed in SC4. To account for and quantify in-
stability, each experiment was repeated five times, as outlined
in SC5. We report the mean, max and min ADP to evaluate the
predictive capabilities of the systems. As post-thresholding
metrics, we report the mean, minimum, and best precision
across all iterations. Additionally, true positives and false pos-
itives are calculated for the instance with the highest precision
to represent attribution quality in a best-case scenario. Some
experiments involving ■ SIGL and ■ R-CAID were excluded
due to excessive training time–exceeding two days–or OOM

11

System ADP σ̃ADP Precision TP FP
Mean Min Best Mean Min Best Best

E5-CADETS
■ SIGL
■ THREATRACE 0.00 0.00 0.00 199% 0.00 0.00 0.00 98 3.1M
■ NODLINK 0.23 0.18 0.33 24% 0.00 0.00 0.00 76 708k
■ MAGIC 0.05 0.03 0.07 26% 0.00 0.00 0.00 118 2.6M
■ KAIROS 0.02 0.01 0.03 49% 0.00 0.00 0.00 0 6
■ FLASH 0.04 0.02 0.04 21% 0.00 0.00 0.00 6 24k
■ R-CAID
■ ORTHRUS 0.44 0.26 0.54 27% 0.43 0.25 0.50 1 1
■ VELOX 0.31 0.10 0.50 51% 0.12 0.10 0.14 11 68

E5-CLEARSCOPE
■ SIGL
■ THREATRACE 0.01 0.01 0.01 19% 0.00 0.00 0.00 42 64k
■ NODLINK 0.10 0.01 0.17 65% 0.00 0.00 0.00 33 38k
■ MAGIC 0.01 0.01 0.01 11% 0.00 0.00 0.00 50 105k
■ KAIROS 0.33 0.33 0.33 0% 0.12 0.08 0.25 1 3
■ FLASH 0.03 0.03 0.04 19% 0.00 0.00 0.00 24 24k
■ R-CAID
■ ORTHRUS 0.09 0.06 0.12 25% 0.04 0.00 0.10 1 9
■ VELOX 0.45 0.25 0.61 31% 0.34 0.21 0.38 8 13

E5-THEIA
■ SIGL
■ THREATRACE 0.05 0.05 0.05 2% 0.00 0.00 0.00 64 722k
■ NODLINK 0.00 0.00 0.00 0% 0.00 0.00 0.00 36 38k
■ MAGIC 0.20 0.00 1.00 199% 0.00 0.00 0.00 68 445k
■ KAIROS 0.17 0.01 0.50 112% 0.03 0.00 0.08 2 23
■ FLASH 0.01 0.01 0.02 44% 0.00 0.00 0.00 31 311k
■ R-CAID
■ ORTHRUS 0.70 0.50 1.00 31% 0.39 0.33 0.50 1 1
■ VELOX 1.00 1.00 1.00 0% 1.00 1.00 1.00 2 0

Table 5: Detection results on E5 datasets. Rows in gray indi-
cate timed-out or failed experiments.

errors. As discussed in §3, this could be attributed to our own
re-implementation.
Predictive capability and post-thresholding performance.
While the precision scores reported in Table 4 and Table 5
align with those in the most recent study by Jiang et al. [80],
the ADP scores are notably higher than one would anticipate.
The underwhelming precision scores of certain systems can be
attributed to suboptimal threshold selection. Better threshold
selection should be a focus of future study.
VELOX’s surprising performance. The simple linear layer
used by ■ VELOX achieves remarkable performance, match-
ing or exceeding the best ADP scores of significantly more
complex systems on eight out of nine datasets (excluding
H501-OpTC). With best-case ADP scores of 0.5 or higher
across all datasets, ■ VELOX demonstrates that detecting the
attacks in these datasets does not require modeling graph
patterns—a simple text embedding fed into a neural network
is sufficient. This unexpected result challenges the prevail-
ing trend in the literature, which often favors increasingly
complex GNN architectures.
Inconsistent performance across datasets. Fig. 12a high-
lights ■ ORTHRUS and ■ VELOX as clear leaders in predic-
tive capabilities across all datasets. However, they underper-
form in certain scenarios, which poses challenges for practi-
cal deployment. Specifically, we ignore the conditions under
which these systems may fail to perform optimally. The re-
sults presented in Table 6 are particularly concerning for the
community, especially given the infrequent use of the DARPA
OpTC dataset in past evaluations. This issue is further dis-
cussed in §6.
High instability. The significant instability exhibited by all

System ADP σ̃ADP Precision TP FP
Mean Min Best Mean Min Best Best

H051-OpTC
■ SIGL
■ THREATRACE 0.57 0.03 1.00 66% 0.00 0.00 0.00 114 1.5M
■ NODLINK 0.20 0.00 1.00 197% 0.00 0.00 0.00 20 102k
■ MAGIC 0.37 0.20 0.50 30% 0.00 0.00 0.00 102 259k
■ KAIROS 0.50 0.11 1.00 81% 0.14 0.00 0.33 1 2
■ FLASH 0.14 0.03 0.50 130% 0.00 0.00 0.00 2 9.2k
■ R-CAID
■ ORTHRUS 0.68 0.06 1.00 59% 0.08 0.00 0.20 1 4
■ VELOX 0.57 0.11 1.00 64% 0.12 0.00 0.50 1 1

H201-OpTC
■ SIGL
■ THREATRACE 0.13 0.12 0.17 12% 0.00 0.00 0.00 2.9k 1.4M
■ NODLINK 0.32 0.08 1.00 108% 0.02 0.02 0.02 1.4k 78k
■ MAGIC 0.87 0.33 1.00 30% 0.00 0.00 0.00 1.1k 1.2M
■ KAIROS 0.75 0.25 1.00 42% 0.38 0.00 1.00 1 0
■ FLASH 1.00 1.00 1.00 0% 0.00 0.00 0.01 1.5k 239k
■ R-CAID
■ ORTHRUS 0.48 0.23 1.00 57% 0.14 0.00 0.25 1 3
■ VELOX 0.90 0.50 1.00 22% 0.18 0.11 0.25 1 3

H501-OpTC
■ SIGL
■ THREATRACE 0.62 0.25 1.00 52% 0.01 0.00 0.05 2 42
■ NODLINK 0.03 0.01 0.08 82% 0.00 0.00 0.00 355 102k
■ MAGIC 1.00 1.00 1.00 0% 0.00 0.00 0.00 185 260k
■ KAIROS 0.38 0.09 1.00 82% 0.12 0.00 0.33 1 2
■ FLASH 0.58 0.14 1.00 62% 0.00 0.00 0.00 222 215k
■ R-CAID
■ ORTHRUS 0.25 0.14 0.33 29% 0.11 0.04 0.20 1 4
■ VELOX 0.39 0.20 0.50 34% 0.13 0.00 0.20 1 4

Table 6: Detection results on OpTC datasets. Rows in gray
indicate timed-out or failed experiments.

(a) Overall averaged ADP. (b) Overall averaged σ̃ADP.

Figure 12: ADP and σ̃ADP average across five iterations for
all datasets.

systems (Fig. 12b) presents a major obstacle to the practical
deployment of PIDSs. This issue is likely rooted in the unsu-
pervised learning techniques currently prevalent in the litera-
ture. We hypothesize that incorporating methods like negative
sampling could potentially improve performance. However,
our experience indicates that applying such techniques in a
naive manner results in degraded predictive capabilities. This
highlights the need for further exploration and refinement of
learning methodologies.

Computational cost VS detection performance. Fig. 13
shows ADP as a function of different metrics representing
computational cost. ■ VELOX shows the best cost/perfor-
mance trade-off on most datasets. We think such figures are
particularly important to assess the effectiveness and practi-
cality of PIDSs and encourage their inclusion in future work.

12

Figure 13: Evolution of ADP with respect to runtime and memory metrics on E3-CADETS.

0 1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

Added Edges

A
D
P

(a) ADP score against adversarial
attack.

0 1,000 2,000 3,000 4,000 5,000

0

20

40

60

80

100

Added Edges

M
al
ic
io
u
s
T
P
s
(%

)
Threatrace
NodLink
Magic
Kairos
Flash

Orthrus
Velox

(b) Percentage of TPs directly re-
lated to attack activities.

Figure 14: Performance of tuned systems against the adver-
sarial attack on E3-CADETS.

5.2 Adversarial Robustness
Previous work [62, 66, 80] evaluates the robustness of detec-
tion systems using the methodology developed by Goya et
al. [89]. Leveraging the publicly available code, we manip-
ulate the graph to execute an evasion attack on PIDSs. The
graph manipulation inserts graph elements to create deceptive
similarities between the node neighborhood distributions in
the attack subgraph and those in benign provenance subgraphs.
The results of these experiments are presented in Fig. 14.

A comparison of Fig. 14a and Fig. 14b reveals key in-
sights on how the attacks proposed by Goya et al. affects
PIDSs. Most systems successfully detect the spurious ac-
tivity introduced by the attacker-controlled process, as evi-
denced by a stable or rising ADP in Fig. 14a. However, post-
thresholding alerts are frequently dominated (see Fig. 14b)
by these spurious, benign-looking activities, which could po-
tentially mislead cyber analysts. Despite this, the attack fails
to suppress alerts and, in some cases, even increases their
frequency. While the attack proposed by Goya et al. has been
shown to successfully target older PIDSs [56, 57, 71], state-
of-the-art systems exhibit at least partial robustness against
this type of attack.

5.3 Achieving Real-Time Detection
■ VELOX is inherently optimized for real-time detection, as it
requires only the text embeddings of the two endpoint nodes
and the edge type for inference on incoming edges. This
design not only enables ■ VELOX to function as a real-time
PIDS but also significantly reduces memory consumption by
eliminating the need to store entire graphs or deep network

layers in memory. The lightweight architecture of ■ VELOX
allows it to operate efficiently on CPUs, unlike other systems
that rely on GPUs for effective inference.3 This advantage
enhances ■ VELOX’s practicality and deployability on client
devices with limited computational resources.

To assess the feasibility of deploying ■ VELOX in practical
scenarios on a host device, we conduct an evaluation in a real-
time detection setting and show the results in Fig. 15.
Memory usage. As illustrated in Fig. 15a, the memory usage
on the host device remains constant during activity peaks
and do not exceed 5.7MB, significantly below the 160MB
maximum memory footprint reported by Dong et al. [81]. The
memory consumption remains indeed stable because the input
size, represented by the event edge, does not vary. The overall
limited memory footprint is primarily due to the need to store
only the neural network weights, the two node embeddings,
and general process-related variables.
Runtime overhead. As shown in Fig. 15b, the CPU usage
peaks at 107% indicating that a single core is sufficient during
inference activity. With modern multi-core CPU architectures,
■ VELOX’s operations leave most cores available for other
user tasks—even in the worst-case scenario during inference.
Further, when considering idle periods, ■ VELOX utilizes
only 5% of a single CPU. This satisfies the average maximum
of 5.2% overhead requirements reported by Dong et al. [81].
Inference time. Fig. 15c shows that ■ VELOX achieves an
inference runtime of approximately 41 ms per edge, or roughly
2,400 edges/s. For comparison, for all datasets used in this
study the peak is reached on E5-CADETS with 1,832 edges
per second, significantly below ■ VELOX’s limit. This leaves
sufficient capacity for post-processing tasks such as real-time
analysis and attack reconstruction.

6 Discussion & Future Work

Sometimes simpler is better. While security researchers
do not routinely preregister [119] their experiments, had we
done so our final results would not have matched our initial
hypothesis. We initially hypothesized that combining various
“tricks” and optimizations from the literature would surpass
state-of-the-art systems. However, our findings reveal that a
relatively simple neural network outperforms most existing

3We note that all evaluations in this paper have been performed on ma-
chines with high-end NVIDIA GA100 GPUs. All GNN-based systems will
see their performance significantly degraded on lower-end machines.

13

(a) RAM usage during inference (b) CPU usage (8-core CPU) (c) Inference time

Figure 15: Resource consumption of ■ VELOX in a real-time detection setting on E3-CADETS.

methods. Better understanding the conditions under which
(and why) this simpler design can outperform graph-aware
detection techniques need further exploration.
The need for interpretability. We were often left speculat-
ing about the reasons behind a given system’s performance,
which fundamentally stems from the lack of interpretabil-
ity in current PIDSs. While the decisions made by VELOX
are relatively straightforward to interpret—anomalies can be
traced back to pairwise interactions between system objects
(e.g., files, processes, sockets, etc.)—the same cannot be said
for GNN-based systems. GNNs depend on complex mes-
sage passing and network effects, making their interpretabil-
ity a significant challenge [120]. Moreover, developing inter-
pretable models could simplify security analysts’ work [121].
Taking a closer look at capture mechanisms. Tables 4,
5, and 6 highlight that the performance of a given system
can vary significantly across datasets (e.g., ■ KAIROS ex-
hibits low ADP on E3-CADETS but performs relatively well
on E3-CLEARSCOPE and E3-THEIA). At least four dimensions
differ across datasets: (1) the operating systems being moni-
tored, (2) the benign activities4, (3) the malicious activities,
and (4) how the provenance graph represents system execu-
tion5. The community has long suspected [123] that the way
a capture mechanism represents activity impacts downstream
detection performance. However, current datasets do not al-
low for disentangling the effects of these four dimensions. We
hypothesize that co-designing capture and detection mecha-
nisms could significantly improve performance.
Robustness to adversarial manipulation. Goya et al. [89]
were the first to attempt evading PIDSs. While effective
against older systems, their approach falls short against state-
of-the-art systems (see §5.2). We attempted to evaluate robust-
ness using ProvNinja [84] but could not due to its incomplete
open-source release. Key datasets are missing, and the doc-
umentation is limited. For instance, generating conspicuous
events involves selecting the k least regular events, but neither
the paper nor the code specifies how k is determined. Further,
the authors indicate that the DARPA TC dataset has signifi-

4The extent to which the quality of benign activities was considered dur-
ing dataset design remains unclear. Repetitive or unrealistic benign behavior
can inflate detection performance.

5Chan et al. [122] demonstrated that different capture systems can repre-
sent the same event in significantly different ways.

cant limitations, including short duration, scripted activities,
and a limited selection of user-facing applications. Exploring
evasion techniques against PIDSs remains an open challenge.
Beware of computational cost. Training complex GNN mod-
els is expensive. Even when minimizing extraneous computa-
tion (see §3), the experiments backing our finding required
453 days of compute time. Chief contributor to this cost are
hyperparameter tuning cost (see SC4) and instability measure-
ment (see SC5). The research cost may be prohibitive outside
of well funded labs. For the sustainability and equitable access
of the PIDS subfield, we echo Jiang et al. call for agreed upon
ground truth and standardized evaluation methodology [80].
Focus should be on comparing recent systems with optimal
detection performance and cost trade-offs.

7 Conclusion

To the best of our knowledge, this paper represents the most
comprehensive study of provenance-based intrusion detection
systems to date, encompassing a total runtime of 453 days.
We identified key shortcomings in the existing literature and
demonstrated that a simple neural network can outperform
state-of-the-art systems in eight out of nine well-established
benchmarks. We aim to inspire efforts in designing more
effective and practical PIDSs and hope that our findings con-
tribute to improving evaluation methodologies in future re-
search.

8 Compliance with the Open Science Policy

We open-source our framework (see §3), including VELOX
and the code to run all baselines (except for SIGL). The ar-
tifact’s permanent link is https://zenodo.org/records/
15603122. The latest version of the framework is available at:
https://github.com/ubc-provenance/PIDSMaker. All
code, ground truth data, and instructions for reproducing the
experiments presented in this paper are available at: https://
github.com/ubc-provenance/PIDSMaker/tree/velox.

9 Ethics Considerations

We have considered the risks and benefits of our re-
search [124] and, to the best of our knowledge, it raises no

14

https://zenodo.org/records/15603122
https://zenodo.org/records/15603122
https://github.com/ubc-provenance/PIDSMaker
https://github.com/ubc-provenance/PIDSMaker/tree/velox
https://github.com/ubc-provenance/PIDSMaker/tree/velox

ethical concerns. All experiments use publicly available, ethi-
cally collected datasets that contain no sensitive information.

Acknowledgments

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC). Nous
remercions le Conseil de recherches en sciences naturelles
et en génie du Canada (CRSNG) de son soutien. Research
reported in this publication was supported by an Amazon
Research Award. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not reflect the views of Amazon.

References

[1] Kyu Hyung Lee, X. Zhang, and Dongyan Xu. High Ac-
curacy Attack Provenance via Binary-based Execution
Partition. In Network and Distributed System Security
Symposium (NDSS’13). The Internet Society, 2013.

[2] Shiqing Ma, X. Zhang, and Dongyan Xu. ProTracer:
Towards Practical Provenance Tracing by Alternating
Between Logging and Tainting. In Network and Dis-
tributed System Security Symposium (NDSS’16). The
Internet Society, 2016.

[3] Azadeh Tabiban, Heyang Zhao, et al. ProvTalk: To-
wards Interpretable Multi-level Provenance Analysis
in Networking Functions Virtualization (NFV). In
Network and Distributed System Security Symposium
(NDSS’22). The Internet Society, 2022.

[4] Adam Bates, Dave Jing Tian, et al. Trustworthy Whole-
System Provenance for the Linux Kernel. In Security
Symposium (USENIX Sec’15). USENIX, 2015.

[5] Yang Ji, Sangho Lee, et al. Enabling Refinable Cross-
Host Attack Investigation with Efficient Data Flow Tag-
ging and Tracking. In Security Symposium (USENIX
Sec’18). USENIX, 2018.

[6] Xutong Chen, Hassaan Irshad, et al. CLARION: Sound
and Clear Provenance Tracking for Microservice De-
ployments. In Security Symposium (USENIX Sec’21).
USENIX, 2021.

[7] Pubali Datta, Isaac Polinsky, et al. ALASTOR: Re-
constructing the Provenance of Serverless Intrusions.
In Security Symposium (USENIX Sec’22). USENIX,
2022.

[8] Viet Tung Hoang, Cong Wu, and Xin Yuan. Faster Yet
Safer: Logging System Via Fixed-Key Blockcipher.
In Security Symposium (USENIX Sec’22). USENIX,
2022.

[9] Heng Yin, Dawn Xiaodong Song, et al. Panorama:
Capturing System-wide Information Flow for Malware

Detection and Analysis. In Conference on Computer
and Communications Security (CCS’07). ACM, 2007.

[10] Yang Ji, Sangho Lee, et al. RAIN: Refinable Attack
Investigation with On-demand Inter-Process Informa-
tion Flow Tracking. Conference on Computer and
Communications Security (CCS’17), 2017.

[11] Riccardo Paccagnella, Kevin Liao, et al. Logging to the
Danger Zone: Race Condition Attacks and Defenses
on System Audit Frameworks. In Conference on Com-
puter and Communications Security (CCS’20). ACM,
2020.

[12] Jun Zeng, Chuqi Zhang, and Zhenkai Liang. Palan-
Tír: Optimizing Attack Provenance with Hardware-
enhanced System Observability. In Conference on
Computer and Communications Security (CCS’22).
ACM, 2022.

[13] R. C. Sekar, Hanke Kimm, and Rohit Aich. eAudit:
A Fast, Scalable and Deployable Audit Data Collec-
tion System. In Symposium on Security and Privacy
(S&P’24). IEEE, 2024.

[14] Kiran-Kumar Muniswamy-Reddy, David A. Holland,
et al. Provenance-aware storage systems. In Annual
Technical Conference (ATC’06). USENIX, 2006.

[15] Kiran-Kumar Muniswamy-Reddy, Uri Braun, et al.
Layering in provenance systems. In Annual Technical
Conference (ATC’09). USENIX, 2009.

[16] Ashish Gehani and Dawood Tariq. Spade: Support for
provenance auditing in distributed environments. In In-
ternational Middleware Conference (Middleware’12).
USENIX/ACM/IFIP, 2012.

[17] Devin J. Pohly, Stephen E. McLaughlin, et al. Hi-fi:
collecting high-fidelity whole-system provenance. In
Asia-Pacific Computer Systems Architecture Confer-
ence (ACSAC’12), 2012.

[18] Manolis Stamatogiannakis, Paul T. Groth, and Her-
bert Bos. Looking inside the black-box: Capturing
data provenance using dynamic instrumentation. In
International Provenance and Annotation Workshop
(IPAW’14). Springer, 2014.

[19] Manolis Stamatogiannakis, Paul T. Groth, and Herbert
Bos. Decoupling provenance capture and analysis from
execution. In Workshop on the Theory and Practice of
Provenance (TaPP’15). USENIX, 2015.

[20] Yang Ji, Sangho Lee, and Wenke Lee. RecProv: To-
wards Provenance-Aware User Space Record and Re-
play. In International Provenance and Annotation
Workshop (IPAW’16). Springer, 2016.

[21] Jörg Thalheim, Pramod Bhatotia, and Christof Fetzer.
INSPECTOR: Data Provenance Using Intel Processor
Trace (PT). In International Conference on Distributed
Computing Systems (ICDCS’16). IEEE, 2016.

15

[22] Thomas Pasquier, Xueyuan Han, et al. Practical whole-
system provenance capture. In Symposium on Cloud
Computing (SoCC’17). ACM, 2017.

[23] Fei Wang, Yonghwi Kwon, et al. Lprov: Practical
library-aware provenance tracing. In Annual Computer
Security Applications Conference (ACSAC’18), 2018.

[24] Sheung Chi Chan, James Cheney, et al. ProvMark:
A Provenance Expressiveness Benchmarking Sys-
tem. In International Middleware Conference (Middle-
ware’19). USENIX/ACM/IFIP, 2019.

[25] Soo Yee Lim, Bogdan Stelea, et al. Secure Namespaced
Kernel Audit for Containers. In Symposium on Cloud
Computing (SoCC’21). ACM, 2021.

[26] Sadegh M Milajerdi, Rigel Gjomemo, et al. HOLMES:
Real-time APT Detection through Correlation of Sus-
picious Information Flows. In Symposium on Security
and Privacy (S&P’19). IEEE, 2019.

[27] Yonghwi Kwon, Fei Wang, et al. MCI : Modeling-
based Causality Inference in Audit Logging for Attack
Investigation. In Network and Distributed System Se-
curity Symposium (NDSS’18). The Internet Society,
2018.

[28] Yushan Liu, Mu Zhang, et al. Towards a Timely Causal-
ity Analysis for Enterprise Security. In Network and
Distributed System Security Symposium (NDSS’18).
The Internet Society, 2018.

[29] Wajih Ul Hassan, Shengjian Guo, et al. NoDoze: Com-
batting Threat Alert Fatigue with Automated Prove-
nance Triage. In Network and Distributed System Se-
curity Symposium (NDSS’19). The Internet Society,
2019.

[30] Wajih Ul Hassan, Mohammad A. Noureddine, et al.
OmegaLog: High-Fidelity Attack Investigation via
Transparent Multi-layer Log Analysis. In Network and
Distributed System Security Symposium (NDSS’20).
The Internet Society, 2020.

[31] Runqing Yang, Shiqing Ma, et al. UIScope: Accurate,
Instrumentation-free, and Visible Attack Investigation
for GUI Applications. In Network and Distributed
System Security Symposium (NDSS’20). The Internet
Society, 2020.

[32] Le Yu, Shiqing Ma, et al. ALchemist: Fusing Appli-
cation and Audit Logs for Precise Attack Provenance
without Instrumentation. In Network and Distributed
System Security Symposium (NDSS’21). The Internet
Society, 2021.

[33] Jun Zeng, Zheng Leong Chua, et al. WATSON: Ab-
stracting Behaviors from Audit Logs via Aggregation
of Contextual Semantics. In Network and Distributed
System Security Symposium (NDSS’21). The Internet
Society, 2021.

[34] Shiqing Ma, Juan Zhai, et al. MPI: Multiple Perspec-
tive Attack Investigation with Semantic Aware Exe-
cution Partitioning. In Security Symposium (USENIX
Sec’17). USENIX, 2017.

[35] Peng Gao, Xusheng Xiao, et al. Saql: A Stream-based
Query System for Real-Time Abnormal System Be-
havior Detection. In Security Symposium (USENIX
Sec’18). USENIX, 2018.

[36] Abdulellah Alsaheel, Yuhong Nan, et al. ATLAS: A
Sequence-based Learning Approach for Attack Inves-
tigation. In Security Symposium (USENIX Sec’21).
USENIX, 2021.

[37] Pengcheng Fang, Peng Gao, et al. Back-Propagating
System Dependency Impact for Attack Investigation.
In Security Symposium (USENIX Sec’22). USENIX,
2022.

[38] Sadegh M. Milajerdi, Birhanu Eshete, et al. POIROT:
Aligning Attack Behavior with Kernel Audit Records
for Cyber Threat Hunting. In Conference on Computer
and Communications Security (CCS’19). ACM, 2019.

[39] Enes Altinisik, Fatih Deniz, and Husrev Taha Sencar.
ProvG-Searcher: A Graph Representation Learning
Approach for Efficient Provenance Graph Search. In
Conference on Computer and Communications Secu-
rity (CCS’23). ACM, 2023.

[40] Wajih Ul Hassan, Adam Bates, and Daniel Marino.
Tactical Provenance Analysis for Endpoint Detection
and Response Systems. In Symposium on Security and
Privacy (S&P’20). IEEE, 2020.

[41] Thijs van Ede, H. Aghakhani, et al. DEEPCASE: Semi-
Supervised Contextual Analysis of Security Events. In
Symposium on Security and Privacy (S&P’22). IEEE,
2022.

[42] Mahmood Sharif, Pubali Datta, et al. DrSec: Flexi-
ble Distributed Representations for Efficient Endpoint
Security. In Symposium on Security and Privacy
(S&P’24). IEEE, 2024.

[43] Samuel T. King and Peter M. Chen. Backtracking
Intrusions. ACM Transactions on Computer Systems,
2003.

[44] Kexin Pei, Zhongshu Gu, et al. HERCULE: Attack
Story Reconstruction via Community Discovery on
Correlated Log Graph. In Annual Computer Security
Applications Conference (ACSAC’16), 2016.

[45] Sadegh M. Milajerdi, Birhanu Eshete, et al. ProPatrol:
Attack Investigation via Extracted High-Level Tasks.
In International Conference on Information Systems
Security (ICISS’18). Springer, 2018.

[46] Peng Gao, Xusheng Xiao, et al. AIQL: Enabling
Efficient Attack Investigation from System Monitor-

16

ing Data. In Annual Technical Conference (ATC’18).
USENIX, 2018.

[47] Frank Capobianco, Rahul George, et al. Employing
Attack Graphs for Intrusion Detection. In New Security
Paradigms Workshop (NSPW’19). ACM, 2019.

[48] Jiaping Gui, Ding Li, et al. APTrace: A Responsive
System for Agile Enterprise Level Causality Analy-
sis. In International Conference on Data Engineering
(ICDE’20). IEEE, 2020.

[49] Peng Gao, Fei Shao, et al. Enabling Efficient Cyber
Threat Hunting With Cyber Threat Intelligence. Inter-
national Conference on Data Engineering (ICDE’21),
2021.

[50] Yushan Liu, Xiaokui Shu, et al. RAPID: Real-Time
Alert Investigation with Context-aware Prioritization
for Efficient Threat Discovery. In Annual Computer
Security Applications Conference (ACSAC’22), 2022.

[51] Xiaoyan Sun, Jun Dai, et al. Using Bayesian Net-
works for Probabilistic Identification of Zero-Day At-
tack Paths. IEEE Transactions on Information Foren-
sics and Security, 2018.

[52] Yulai Xie, Yafeng Wu, et al. P-Gaussian: Provenance-
Based Gaussian Distribution for Detecting Intrusion
Behavior Variants Using High Efficient and Real Time
Memory Databases. IEEE Transactions on Depend-
able and Secure Computing, 2021.

[53] Atmane Ayoub Mansour Bahar, Kamel Soaïd Ferrahi,
et al. FedHE-Graph: Federated Learning with Hy-
brid Encryption on Graph Neural Networks for Ad-
vanced Persistent Threat Detection. In International
Conference on Availability, Reliability and Security
(ARES’24). SBA Research, 2024.

[54] Mathieu Barré, Ashish Gehani, and Vinod Yeg-
neswaran. Mining Data Provenance to Detect Ad-
vanced Persistent Threats. In Workshop on the The-
ory and Practice of Provenance (TaPP’19). USENIX,
2019.

[55] Sanjeev Das, Yang Liu, et al. Semantics-Based On-
line Malware Detection: Towards Efficient Real-Time
Protection Against Malware. IEEE Transactions on
Information Forensics and Security, 2016.

[56] Xueyuan Han, Thomas Pasquier, et al. Unicorn: Run-
time Provenance-Based Detector for Advanced Per-
sistent Threats. In Network and Distributed System
Security Symposium (NDSS’20). The Internet Society,
2020.

[57] Qi Wang, Wajih Ul Hassan, et al. You Are What You
Do: Hunting Stealthy Malware via Data Provenance
Analysis. In Network and Distributed System Security
Symposium (NDSS’20). The Internet Society, 2020.

[58] Xueyuan Han, Xiao Yu, et al. SIGL: Securing Software
Installations Through Deep Graph Learning. In Secu-
rity Symposium (USENIX Sec’21). USENIX, 2021.

[59] Su Wang, Zhiliang Wang, et al. Threatrace: Detecting
and tracing host-based threats in node level through
provenance graph learning. IEEE Transactions on
Information Forensics and Security, 17:3972–3987,
2021.

[60] Shaofei Li, Feng Dong, et al. NODLINK: An Online
System for Fine-Grained APT Attack Detection and
Investigation. In Network and Distributed System Se-
curity Symposium (NDSS’24). The Internet Society,
2024.

[61] Zian Jia, Yun Xiong, et al. MAGIC: Detecting Ad-
vanced Persistent Threats via Masked Graph Repre-
sentation Learning. In Security Symposium (USENIX
Sec’24). USENIX, 2024.

[62] Zijun Cheng, Qiujian Lv, et al. Kairos: Practical Intru-
sion Detection and Investigation using Whole-system
Provenance. In Symposium on Security and Privacy
(S&P’24). IEEE, 2023.

[63] Lingzhi Wang, Xiangmin Shen, et al. Incorporating
Gradients to Rules: Towards Lightweight, Adaptive
Provenance-based Intrusion Detection. arXiv preprint
arXiv:2404.14720, 2024.

[64] Jun Zengy, Xiang Wang, et al. SHADEWATCHER:
Recommendation-guided Cyber Threat Analysis using
System Audit Records. In Symposium on Security and
Privacy (S&P’22). IEEE, 2022.

[65] F. Yang, Jiacen Xu, et al. PROGRAPHER: An
Anomaly Detection System based on Provenance
Graph Embedding. In Security Symposium (USENIX
Sec’23). USENIX, 2023.

[66] Mati Ur Rehman, Hadi Ahmadi, and Wajih Ul Has-
san. Flash: A Comprehensive Approach to Intrusion
Detection via Provenance Graph Representation Learn-
ing. In Symposium on Security and Privacy (S&P’24).
IEEE, 2024.

[67] Akul Goyal, Gang Wang, and Adam Bates. R-CAID:
Embedding Root Cause Analysis within Provenance-
based Intrusion Detection. In Symposium on Security
and Privacy (S&P’24). IEEE, 2024.

[68] Isaiah J. King and Huimin Huang. Euler: Detect-
ing Network Lateral Movement via Scalable Temporal
Graph Link Prediction. In Network and Distributed
System Security Symposium (NDSS’22). The Internet
Society, 2022.

[69] Md Nahid Hossain, Sadegh M. Milajerdi, et al.
SLEUTH: Real-time Attack Scenario Reconstruction
from COTS Audit Data. In Security Symposium
(USENIX Sec’17). USENIX, 2017.

17

[70] Yulai Xie, Dan Feng, et al. Unifying intrusion detec-
tion and forensic analysis via provenance awareness.
Future Generation of Computer Systems, 61:26–36,
2016.

[71] Emaad Manzoor, Sadegh Momeni, et al. Fast Memory-
efficient Anomaly Detection in Streaming Heteroge-
neous Graphs. In International Conference on Knowl-
edge Discovery and Data Mining (KDD’16). ACM,
2016.

[72] Xueyuan Han, Thomas Pasquier, et al. FRAPpuccino:
Fault-detection through Runtime Analysis of Prove-
nance. In Workshop on Hot Topics in Cloud Computing
(HotCloud’17). USENIX, 2017.

[73] Mark Lemay, Wajih Ul Hassan, et al. Automated Prove-
nance Analytics: A Regular Grammar Based Approach
with Applications in Security. In Workshop on the The-
ory and Practice of Provenance (TaPP’17). USENIX,
2017.

[74] Yulai Xie, Dan Feng, et al. Pagoda: A hybrid approach
to enable efficient real-time provenance based intrusion
detection in big data environments. IEEE Transactions
on Dependable and Secure Computing, 17:1283–1296,
2020.

[75] Maya Kapoor, Joshua Melton, et al. PROV-GEM: Au-
tomated Provenance Analysis Framework using Graph
Embeddings. In International Conference on Machine
Learning and Applications (ICMLA’21). IEEE, 2021.

[76] Isaiah J. King, Xiaokui Shu, et al. EdgeTorrent: Real-
time Temporal Graph Representations for Intrusion
Detection. In International Symposium on Research in
Attacks, Intrusions and Defenses (RAID’23), 2023.

[77] Lingxiang Meng, Rongrong Xi, et al. PG-AID: An
Anomaly-based Intrusion Detection Method Using
Provenance Graph. In International Conference on
Computer Supported Cooperative Work in Design
(CSCWD’24). IEEE, 2024.

[78] Boyuan Xu, Yiru Gong, et al. ProcSAGE: an efficient
host threat detection method based on graph represen-
tation learning. Springer Cybersecurity, 2024.

[79] Gbadebo Ayoade, Khandakar Ashrafi Akbar, et al.
Evolving Advanced Persistent Threat Detection using
Provenance Graph and Metric Learning. In Conference
on Communications and Network Security (CNS’20).
IEEE, 2020.

[80] Baoxiang Jiang, Tristan Bilot, et al. ORTHRUS:
Achieving High Quality of Attribution in Provenance-
based Intrusion Detection Systems. In Security Sympo-
sium (USENIX Sec’25). USENIX, 2025.

[81] Feng Dong, Shaofei Li, et al. Are we there yet? An
Industrial Viewpoint on Provenance-based Endpoint

Detection and Response Tools. In Conference on Com-
puter and Communications Security (CCS’23). ACM,
2023.

[82] Wajih Ul Hassan, Mark Lemay, et al. Towards Scal-
able Cluster Auditing through Grammatical Inference
over Provenance Graphs. In Network and Distributed
System Security Symposium (NDSS’18). The Internet
Society, 2018.

[83] Hailun Ding, Juan Zhai, et al. The Case for Learned
Provenance Graph Storage Systems. In Security Sym-
posium (USENIX Sec’23). USENIX, 2023.

[84] Kunal Mukherjee, Joshua Wiedemeier, et al. Evading
Provenance-Based ML Detectors with Adversarial Sys-
tem Actions. In Security Symposium (USENIX Sec’23).
USENIX, 2023.

[85] Dongqi Han, Zhiliang Wang, et al. DeepAID: Inter-
preting and Improving Deep Learning-based Anomaly
Detection in Security Applications. In Conference
on Computer and Communications Security (CCS’21).
ACM, 2021.

[86] Min Du, Feifei Li, et al. DeepLog: Anomaly Detection
and Diagnosis from System Logs through Deep Learn-
ing. In Conference on Computer and Communications
Security (CCS’17). ACM, 2017.

[87] Thomas Pasquier, Xueyuan Han, et al. Runtime Anal-
ysis of Whole-System Provenance. In Conference
on Computer and Communications Security (CCS’18).
ACM, 2018.

[88] Fucheng Liu, Yu Wen, et al. Log2vec: A Heteroge-
neous Graph Embedding Based Approach for Detect-
ing Cyber Threats within Enterprise. In Conference
on Computer and Communications Security (CCS’19).
ACM, 2019.

[89] Akul Goyal, Xueyuan Han, et al. Sometimes, You
Aren’t What You Do: Mimicry Attacks against Prove-
nance Graph Host Intrusion Detection Systems. In
Network and Distributed System Security Symposium
(NDSS’23). The Internet Society, 2023.

[90] Md Nahid Hossain, S. Sheikhi, and R. C. Sekar. Com-
bating Dependence Explosion in Forensic Analysis Us-
ing Alternative Tag Propagation Semantics. In Sympo-
sium on Security and Privacy (S&P’20). IEEE, 2020.

[91] Zhiqiang Xu, Pengcheng Fang, et al. DEPCOMM:
Graph Summarization on System Audit Logs for At-
tack Investigation. In Symposium on Security and
Privacy (S&P’22). IEEE, 2022.

[92] Adam Bates, Dave Jing Tian, et al. Taming the costs
of trustworthy provenance through policy reduction.
ACM Transactions on Internet Technology (TOIT), 17:1
– 21, 2017.

18

[93] Shiqing Ma, Juan Zhai, et al. Kernel-Supported Cost-
Effective Audit Logging for Causality Tracking. In An-
nual Technical Conference (ATC’18). USENIX, 2018.

[94] Noor Michael, Jaron Mink, et al. On the forensic va-
lidity of approximated audit logs. In Annual Computer
Security Applications Conference (ACSAC’20), 2020.

[95] Wajih Ul Hassan, Ding Li, et al. This is Why We
Can’t Cache Nice Things: Lightning-Fast Threat Hunt-
ing using Suspicion-Based Hierarchical Storage. In
Annual Computer Security Applications Conference
(ACSAC’20), 2020.

[96] Xingzi Yuan, Omid Setayeshfar, et al. DroidForensics:
Accurate Reconstruction of Android Attacks via Multi-
layer Forensic Logging. In Asia Conference on Com-
puter and Communications Security (AsiaCCS’17).
ACM, 2017.

[97] Muhammad Adil Inam, Yinfang Chen, et al. Sok: His-
tory is a vast early warning system: Auditing the prove-
nance of system intrusions. In Symposium on Security
and Privacy (S&P’23). IEEE, 2023.

[98] Tristan Bilot, Nour El Madhoun, et al. Graph neu-
ral networks for intrusion detection: A survey. IEEE
Access, 11:49114–49139, 2023.

[99] Pooneh Nikkhah Bahrami, Ali Dehghantanha, et al.
Cyber kill chain-based taxonomy of advanced persis-
tent threat actors: Analogy of tactics, techniques, and
procedures. Journal of information processing systems,
15(4):865–889, 2019.

[100] Fernando Maymí, Robert Bixler, et al. Towards a defi-
nition of cyberspace tactics, techniques and procedures.
In 2017 IEEE international conference on big data (big
data), pages 4674–4679. IEEE, 2017.

[101] Transparent Computing Engagement 3 Data Re-
lease, Accessed 8th June 2025. https://github.
com/darpa-i2o/Transparent-Computing/blob/
master/README-E3.md.

[102] Transparent Computing Engagement 5 Data Release,
Accessed 8th June 2025. https://github.com/
darpa-i2o/Transparent-Computing.

[103] Mike van Opstal and William Arbaugh. Operationally
Transparent Cyber (OpTC) Data Release, 2019. https:
//github.com/FiveDirections/OpTC-data.

[104] Talha Abrar, Ahmad Shamail, et al. On the Repro-
ducibility of Provenance-based Intrusion Detection that
uses Deep Learning. In Conference on Reproducibility
and Replicability (REP’25). ACM, 2025.

[105] Sathya Chandran Sundaramurthy, Alexandru G Bardas,
et al. A human capital model for mitigating security
analyst burnout. In Symposium on Usable Privacy and
Security (SOUPS’15). USENIX, 2015.

[106] Aron Laszka, Waseem Abbas, et al. Optimal thresh-
olds for intrusion detection systems. In Symposium
and Bootcamp on the Science of Security (HotSoS’16),
2016.

[107] Jesse Davis and Mark Goadrich. The relationship be-
tween precision-recall and roc curves. In International
Conference on Machine learning (ICML’06), pages
233–240, 2006.

[108] Daniel Arp, Erwin Quiring, et al. Dos and Don’ts of
Machine Learning in Computer Security. In Security
Symposium (USENIX Sec’22). USENIX, 2022.

[109] Vladimir Cherkassky and Filip M Mulier. Learning
from data: concepts, theory, and methods. John Wiley
& Sons, 2007.

[110] Roberto Jordaney, Kumar Sharad, et al. Transcend:
Detecting Concept Drift in Malware Classification
Models. In Security Symposium (USENIX Sec’17).
USENIX, 2017.

[111] Jake Topping, Francesco Di Giovanni, et al. Under-
standing over-squashing and bottlenecks on graphs via
curvature. In International Conference on Learning
Representations (ICLR’22), 2022.

[112] Srinadh Bhojanapalli, Kimberly Wilber, et al. On the
Reproducibility of Neural Network Predictions. arXiv
preprint arXiv:2102.03349, 2021.

[113] Cecilia Summers and Michael J Dinneen. Nondeter-
minism and Instability in Neural Network Optimiza-
tion. In International Conference on Machine Learning
(ICML’21), 2021.

[114] Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. Con-
ference on Neural Information Processing System
(NeurIPS’17), 2017.

[115] Haodong Li, Guosheng Xu, et al. MalCertain: Enhanc-
ing Deep Neural Network Based Android Malware De-
tection by Tackling Prediction Uncertainty. In Interna-
tional Conference on Software Engineering (ICSE’24).
IEEE/ACM, 2024.

[116] Deqiang Li, Tian Qiu, et al. Can We Leverage Pre-
dictive Uncertainty to Detect Dataset Shift and Adver-
sarial Examples in Android Malware Detection? In
Annual Computer Security Applications Conference
(ACSAC’21), 2021.

[117] Thomas N Kipf and Max Welling. Semi-Supervised
Classification with Graph Convolutional Networks. In
International Conference on Learning Representations
(ICLR’17), 2017.

[118] Emanuele Rossi, Ben Chamberlain, et al. Tempo-
ral Graph Networks for Deep Learning on Dynamic
Graphs. arXiv preprint arXiv:2006.10637, 2020.

19

https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/FiveDirections/OpTC-data
https://github.com/FiveDirections/OpTC-data

Statistics E3-CADETS E3-THEIA E3-CLEARSCOPE
Nodes 643,486 1,248,267 291,347
Edges 5,688,416 11,651,551 1,398,858
Attacks 3 2 1
Malicious nodes per attack (8 - 43 - 24) (61 - 58) (41)
Malicious edges per attack (1526 - 31,352 - 3672) (66,028 - 80,997) (24,133)
Days of train set 2018-04-02~05, 07~09 2018-04-02~08 2018-04-03~05, 07~10
Days of val set 2018-04-10 2018-04-09 2018-04-02
Days of test set 2018-04-06, 11~13 2018-04-10, 12,13 2018-04-11, 12
Unused days None 2018-04-11 2018-04-06, 13
x̄ In/Out-degree 8.84 9.33 4.80
x̄ Nodes per 15-min 1276.77 4657.46 537.51
x̄ Edges per 15-min 5620.96 22,025.62 1693.53

Table 7: DARPA TC E3 dataset statistics.

Statistics E5-CADETS E5-THEIA E5-CLEARSCOPE
Nodes 12,573,595 2,138,087 381,479
Edges 151,490,722 45,075,615 54,188,800
Attacks 2 1 3
Malicious nodes per attack (19 - 107) (70) (26 - 17 - 8)
Malicious edges per attack (59,323 - 8,708,508) (35,564) (225,870 - 83 - 38)
Days of train set 2019-05-08, 09, 11 2019-05-08~10 2019-05-08~12
Days of val set 2019-05-12 2019-05-11 2019-05-13
Days of test set 2019-05-16,17 2019-05-14, 15 2019-05-14, 15, 17
Unused days 2019-05-10, 13~15 2019-05-12, 13, 16, 17 2019-05-16
x̄ In/Out-degree 12.05 21.08 142.05
x̄ Nodes per 15-min 34,479.60 19,260.10 1806.13
x̄ Edges per 15-min 161,849.06 52,352.63 58,645.89

Table 8: DARPA TC E5 dataset statistics.

[119] Brian A Nosek, Charles R Ebersole, et al. The pre-
registration revolution. Proceedings of the National
Academy of Sciences, 2018.

[120] Yongqiang Chen, Yatao Bian, et al. How Interpretable
Are Interpretable Graph Neural Networks? In Interna-
tional Conference on Machine Learning (ICML’24),
2024.

[121] Azqa Nadeem, Daniël Vos, et al. SoK: Explainable
Machine Learning for Computer Security Applications.
In European Symposium on Security and Privacy (Eu-
roS&P’23). IEEE, 2023.

[122] Sheung Chi Chan, James Cheney, et al. Prov-
Mark: A Provenance Expressiveness Benchmarking
System. In International Middleware Conference.
ACM/USENIX/IFIP, 2019.

[123] Xueyuan Han, James Mickens, et al. Xanthus: Push-
button orchestration of host provenance data collection.
In International Workshop on Practical Reproducible
Evaluation of Computer Systems. ACM, 2020.

[124] Tadayoshi Kohno, Yasemin Acar, and Wulf Loh. Ethi-
cal Frameworks and Computer Security Trolley Prob-
lems: Foundations for Conversations. In Security Sym-
posium (USENIX Sec’23). USENIX, 2023.

A Datasets
Tables 7, 8, and 9 present statistics for the DARPA TC E3, E5,
and OpTC datasets. The TC dataset, created during the Red
Team vs. Blue Team competition, includes the publicly avail-
able E3 and E5 portions. The Red Team simulated three at-
tacker types—“Nation State,” “Common Threat,” and “Metas-
ploit”—with distinct strategies. E3 spanned two weeks, and
the E5 nine days. OpTC records benign activity from 500

Statistics OPTC-H201 OPTC-H501 OPTC-H051
Nodes 5,268,452 3,964,099 4,615,935
Edges 19,605,225 15,783,742 17,760,252
Attacks 1 1 1
Malicious nodes per attack (2,905) (749) (114)
Malicious edges per attack (300,655) (324,284) (383,667)
Days of train set 2019-09-19~21 2019-09-19~21 2019-09-19~21
Days of val set 2019-09-22 2019-09-22 2019-09-22
Days of test set 2019-09-23 ~25 2019-09-23 ~25 2019-09-23 ~25
Unused days 2019-09-16 ~18 2019-09-16 ~18 2019-09-16 ~18
x̄ In/Out-degree 3.72 3.98 3.85
x̄ Nodes per 15-min 9,702.71 9,288.17 9,384.92
x̄ Edges per 15-min 24,629.68 24,778.24 24,196.53

Table 9: OPTC dataset statistics.

■ THREATRACE ■ NODLINK ■ MAGIC ■ KAIROS ■ FLASH ■ ORTHRUS

Reproduced (pre-trained) 3/8 N/A 3/3 3/7 7/7 N/A
Reproduced (full) 4/8 0/3 3/3 2/7 0/7 5/6
Contacted Authors Yes Yes Yes Yes Yes Yes

Table 10: Results of our reproduction on the DARPA datasets
(E3, E5, and OpTC) using pre-trained models (N/A where
unavailable) and models trained from scratch. We report the
number of succesful reproductions over the total number of
DARPA datasets used in the original evaluation.

Windows hosts over seven days, followed by three days of
both benign and APT activity. Each day features an attack
targeting a specific host (201, 501 or 051), and all events as-
sociated with that host are collected to form each of the three
datasets.

B Reproduction Details
We provide details of our attempt to reproduce past results
(see Table 10) on DARPA datasets (E3, E5, and OpTC) using
authors’ original evaluation methodologies. We consider a
reproduction successful if the results are within 5% of the
original. We do not consider a reproduction successful if we
are unable to confirm the original system’s behavior (e.g., due
to missing code or ground truth labels). Overall, reproduction
attempts were succesful when all data, code, and labels were
available. All authors were contacted.
■ THREATRACE. The code to reproduce E5 experiments was
missing. We could reproduce E3 experiments. The system
was not originally evaluated against OpTC.
■ NODLINK. The code for the E3 experiments was missing.
However, we note that we could reproduce results on the pub-
licly released authors’ dataset. The system was not originally
evaluated against E5 and OpTC.
■ MAGIC. We could reproduce results for the E3 experiments.
The system was not originally evaluated on E5 and OpTC.
■ KAIROS. We could reproduce the E3 results. The authors’
original pipeline errored when generating ground truth files
for the E5 datasets. The labels for OpTC were missing.
■ FLASH. We could reproduce all results using pre-trained
models. We obtained lower results when training from scratch.
We confirm the issue is present in the original authors’ pub-
licly released code.
■ ORTHRUS. Reproduced results are consistent with the paper
with the exception of E3-CLEARSCOPE results.

20

	Introduction
	Background
	Study Motivation
	Considered Systems

	Experimental Framework & Setup
	Shortcomings
	Systems Comparison
	Detection Performance
	Adversarial Robustness
	Achieving Real-Time Detection

	Discussion & Future Work
	Conclusion
	Compliance with the Open Science Policy
	Ethics Considerations
	Datasets
	Reproduction Details

