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Abstract
Past success in applying machine learning to data provenance
graphs – a structured representation of the history of operat-
ing system activities – to detect host system intrusions has
fueled continued interest in the security community. Recent
solutions, particularly anomaly-based approaches using graph
neural networks (GNNs) to detect previously unknown at-
tacks, have reported near-perfect accuracy. Surprisingly, de-
spite this high performance, the industry remains reluctant to
adopt these intrusion detection systems (IDSs).

We identify Quality of Attribution (QoA) as the key factor
contributing to this disconnect. QoA refers to the amount of
effort required from a human analyst to investigate an IDS’s
detection output, uncover the root causes of an attack, un-
derstand its ramifications, and dismiss potential false alarms.
Unfortunately, prior work often generates large volumes of
low-QoA output, much of which is irrelevant to attack activi-
ties, leading to alert fatigue and analyst burnout. We introduce
ORTHRUS, the first IDS to achieve high-QoA detection on
data provenance graphs at the node level. ORTHRUS detects
malicious hosts using a GNN encoder designed to capture the
fine-grained spatio-temporal dynamics of system events. It
then reconstructs the attack path through dependency analysis
to ensure high-QoA detection.

We compare ORTHRUS against five state-of-the-art IDSs.
ORTHRUS reduces the number of nodes requiring manual in-
spection for attack attribution by several orders of magnitude,
significantly easing the burden on security analysts while
achieving strong detection performance.

1 Introduction

In recent years, graph-based machine learning (ML) tech-
niques have gained increasing traction for anomaly detection
across various fields, such as finance, social sciences, and bi-
ology [10, 19, 21, 62, 67, 74]. Graphs are used to model inter-
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actions within complex systems, leveraging domain-specific
semantics – typically based on aggregated topological infor-
mation of nodes and their surrounding neighborhoods – to
identify unusual nodes, edges, paths, subgraphs, or even entire
graphs [11, 43].

In computer systems, a popular approach to intrusion de-
tection and investigation – the practice of identifying the
presence of an attacker in a host system and reasoning about
the cause and damage of the attack [35, 41, 76] – is to analyze
a special type of graph called a provenance graph. In these
graphs, nodes represent low-level operating system objects,
such as processes, files, and sockets, and edges represent var-
ious types of interactions between these objects as a result
of system calls [52, 53]. A provenance graph is directed, at-
tributed, and dynamic. It is directed and attributed because
two nodes are causally connected by a typed edge to rep-
resent a system object (e.g., a process) acting upon another
object (e.g., a file) through a specific system call (e.g., open).
Different node types also have distinct attributes describing
the entities they represent. For example, a process node has
command line options, and a file node has a file name as
attributes. A provenance graph is dynamic because it evolves
over time as the underlying system runs, with its temporal
structure capturing the history of the system’s execution.

Provenance graphs can be used to detect malicious behav-
iors, such as Advanced Persistent Threats (APTs), a partic-
ularly stealthy type of attack [27, 40], during system execu-
tion. Systems designed for this purpose are often referred to
as Provenance-based Intrusion Detection Systems (PIDSs).
They can be divided into two broad categories: (1) prior-
knowledge-based solutions; and (2) anomaly-based ones.
Prior-knowledge-based solutions rely on known attack pat-
terns and are unable to detect unknown attacks. In contrast,
anomaly-based systems are unsupervised and learn benign
behavior patterns from system execution, enabling them to de-
tect previously unknown attacks. We focus on anomaly-based
systems.

Prior work [18, 27, 29, 32, 40, 44, 65, 66, 69, 72, 73] has
proposed various techniques for detecting anomalies in prove-
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nance graphs that indicate attack activity. These solutions
primarily focus on improving detection performance; how-
ever, they rarely consider the attribution quality of detection
signals [20]. Attribution is a crucial aspect of intrusion detec-
tion, where security experts must carefully analyze the output
of the system to identify an intrusion’s root cause and mitigate
its impact. Low-quality signals provide either no contextual
information or an overwhelming amount of irrelevant data,
contributing to alert fatigue [31] and frequent burnout [61].
We identify two main factors contributing to this problem:
(1) the evaluation strategies adopted by prior work (see §2),
and (2) the metrics used to evaluate detection performance
fail to account for the significant class imbalance in intrusion
detection problems (see §5).

We discuss how past evaluation strategies, due to fundamen-
tal flaws in their design, have led to systems that overwhelm
security analysts with irrelevant information. Building on this
insight, we propose a conservative evaluation approach that
favors systems producing a minimal amount of data, better
aligning with security analysts’ needs and guiding the design
of ORTHRUS. As a result, ORTHRUS generates data several
orders of magnitude smaller than state-of-the-art methods, ef-
fectively combating alert fatigue. This reduction would allow
analysts to spend less time on report analysis and more time
actively handling threats [12]. To achieve this, ORTHRUS
combines a novel high-precision anomaly detection system
to identify key attack-related nodes with a dependency anal-
ysis technique to extract relevant ancestors and descendants
of those nodes. We evaluate ORTHRUS against five state-of-
the-art baselines (Kairos [18], ThreaTrace [66], SIGL [29],
MAGIC [36], and Flash [57]). We show ORTHRUS’ superi-
ority in terms of detection performance, attribution quality,
training time, and memory consumption.

Contributions

• ORTHRUS is the first PIDS capable of performing mean-
ingful node-level detection on whole-system provenance
graphs. We carefully designed a detection pipeline that re-
duces the amount of data security experts need to analyze
by several orders of magnitude.

• We generate and open-source a comprehensive and solid
ground truth labeling for PIDSs’ standard benchmark
datasets (DARPA E3 [8] and E5 [9]).

• We open-source our solution and evaluate it using publicly
available datasets (see our compliance with the open science
policy in §9).

2 Issues with Current Evaluation Strategies

Provenance-based Intrusion Detection Systems (PIDSs) rep-
resent a computer system’s execution as a directed graph,
known as a provenance graph, which depicts interactions

between system objects (e.g., processes, files, sockets, etc.).
This information can be used to detect anomalies in system
behavior. PIDSs have evolved from detecting anomalies in
repeated executions of the same application [28, 44] to ana-
lyzing whole-system provenance [27], achieving increasing
accuracy and precision [18, 36, 57]. Unfortunately, the attri-
bution quality of state-of-the-art systems remains a significant
barrier to their practical adoption [20], as they often generate
an overwhelming number of alerts.

Security analysts must examine the information reported
by a detection system to identify attacks and distinguish be-
tween true and false positives. This task becomes particularly
challenging when the number of anomalous graph elements
reported is disproportionately large compared to the actual
anomaly [20]. This shortcoming is a direct result of how
researchers have evaluated past work. We identify three eval-
uation strategies used in assessing state-of-the-art systems,
highlight their flaws, and propose a new approach to address
these shortcomings.1

Table 1 compare the number nodes considered malicious
under each evaluation strategy. We describe these approaches
and explain their flaws below.
Neighborhood Approach (e.g., ThreaTrace [66], Flash [57],
and MAGIC [36]). In this evaluation strategy, any node within
2 hops (both ancestors and descendants) of a node mentioned
in the textual description of the ground truth is considered
to be contributing to the attack. For instance, in a scenario
where a malicious process and a benign one access a shared
library, both nodes are considered part of the attack, even if
one process is completely unrelated. In general, a node is
labeled as malicious simply by sharing a dependency with
an attack-related event. This strategy leads to a significant
overestimation of the number of malicious nodes.
Batch Approach (e.g., Kairos [18] and EdgeTorrent [38]).
In this strategy, the evaluated system processes a batch of
events (e.g., a fixed number in the case of EdgeTorrent or
based on elapsed time in the case of Kairos) and computes
an anomaly score for the entire batch. As with the previous
strategy, this tends to overestimate the number of malicious
nodes, as events occurring simultaneously with an attack are
considered malicious.
Source Approach (e.g., R-CAID [25]). In this strategy, the
source nodes of an attack are identified, and all descendants
are considered malicious. This method is problematic because
it overestimates the scope of attack activities. For example, if
an attacker hijacks a Firefox process to download a malicious
payload, all subsequent activities performed by the browser
are labeled as malicious. This can include hours of benign
browsing activities that are completely unrelated to the attack.
As previous strategies, this significantly overestimate attacks
activities.

As Arp et al. [15] warn us about how the choice of poor

1We acknowledge that our own work UNICORN [27], SIGL [29], and
Kairos [18] have contributed to this trend and share these flaws.
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Datasets Training Validation Test Total Neigh. Batch Source Ours Prevalence
E3-CADETS 449,325 40,581 268,153 758,059 12,852 4,929 2,062 68 2.5×10−4

E3-THEIA 410,023 34,365 699,295 1,143,683 25,362 51,098 35,794 118 1.7×10−4

E3-CLEARSCOPE 132,121 797 111,394 244,312 32,451 8,727 2,750 41 3.7×10−4

E5-CADETS 3,275,875 1,245,539 3,111,378 7,632,792 20,524 717,783 401,065 123 4.0×10−5

E5-THEIA 745,773 234,896 747,452 1,728,121 162,714 61,368 9,374 69 9.2×10−5

E5-CLEARSCOPE 171,771 3,842 150,725 326,338 48,488 8,636 1,020 51 3.4×10−4

Table 1: Comparison of evaluation strategies. Ground truth for the neighborhood (Neigh.) approach is calculated based on the
methodology from Wang et al. [66], the batch approach from Cheng et al. [18], and the source approach from Goyal et al. [25].
We contacted the authors to confirm our understanding of their methodology. In all cases, our ground truth is smaller by several
orders of magnitude. We also report the prevalence of malicious nodes in the test set using our methodology. It is important to
note the significant class imbalance, with the proportion of malicious nodes ranging from approximately 1:10,000 to 1:1,000,000
across different datasets. A visual representation of the output of a "perfect" detection system for each strategy is provided in
Appendix D.

evaluation methodology can lead to the design of impractical
systems, while Pendlebury et al. [54] show how it leads to mis-
leading performance reports in Malware classification task.
While systems developed under the above evaluation method-
ologies may appear capable of identifying perturbations po-
tentially correlated with attacks, they fail to achieve precise
node-level attribution. Previous work [18, 57] acknowledges
this issue and recognizes the challenge posed by the large vol-
ume of data produced by state-of-the-art PIDSs for security
analysts. Kairos [18] employs community discovery and sum-
marization techniques to group output data into meaningful
subgraphs, while Flash [57] adopts a similar strategy by gen-
erating so-called “Attack Evolution Graphs”. However, these
approaches address only the symptom, not the root problem.
They merely organize and summarize the vast amounts of
unnecessary data into more manageable chunks [17] without
resolving the fundamental inability of these systems to pin-
point nodes directly relevant to malicious behaviors. Practical
systems cannot emerge until an appropriate methodology for
evaluating them is established.
Our approach. We manually and painstakingly analyzed
the datasets, comparing the textual documentation with the
data they contain, to identify individual nodes that are part
of the attacks. While previous approaches considered several
thousand nodes as malicious, we identified between 41 and
123 nodes. When we attempted to evaluate previous systems
using our approach, we quickly uncovered their inadequacies
(see §5). We design ORTHRUS to achieve high attribution
quality.

3 Threat Model

We follow the same threat model as past work [18, 27, 47,
48, 65]. We assume that attackers seek to take control of and
maintain their presence in the target system. Activities not cap-
tured by standard kernel-level systems are considered out of
scope (e.g., covert and hardware-level side channels). We also

assume that the system is outside of attacker control when
the training data is captured and when the training occurs
(i.e., we exclude data and model poisoning from our threat
model). ORTHRUS’ software, the provenance capture mech-
anism, and the underlying OS form our trusted computing
base. We assume the capture mechanism and OS are protected
from attackers using hardening techniques described in past
provenance capture work [16, 52]. Finally, we assume that the
provenance record is protected against tampering; we lever-
age tamper-evident logging techniques [50, 51] to ensure log
integrity and detect any attempts at tampering.

4 ORTHRUS Framework

ORTHRUS is an anomaly-based intrusion detection system
that leverages advanced temporal graph learning techniques
and causality analysis to (1) perform node-level anomaly de-
tection without prior knowledge of attacks, and (2) reconstruct
attack scenarios. ORTHRUS generates concise attack summary
graphs with high attribution quality, enabling labor-efficient
attack investigation. Fig. 1 illustrates the overall architecture
of ORTHRUS, which comprises five components:
1⃝ Graph Construction (§4.1). Provenance graphs are built

from raw logs, and redundant edges are pruned while preserv-
ing the sequence of events.
2⃝ Edge Featurization (§4.2). ORTHRUS converts prove-
nance graphs into a sequence of vectorized edges used for
graph learning.
3⃝ Temporal Graph Learning (§4.3). ORTHRUS employs

an encoder-decoder architecture to capture both the structural
and temporal aspects of provenance graphs. The model pro-
cesses the edge vector sequence as input, encoding it into edge
embeddings. These embeddings are then decoded to predict
the type of each edge. Reconstruction errors are determined
by calculating the loss between the predicted and actual edge
types.
4⃝ Anomaly Detection (§4.4). First, we apply an automated
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Figure 1: Overview of ORTHRUS framework.

thresholding technique to detect abnormal nodes. Then, we
cluster the outliers to differentiate between benign anoma-
lies (i.e., infrequent patterns) and malicious ones (i.e., truly
malicious behaviors). This two-step approach eliminates the
need for manual threshold setting, significantly reduces false
positives, and enhances both precision and attribution quality.
5⃝ Attack Reconstruction (§4.5). ORTHRUS takes the output
of the anomaly detection stage to perform causality analysis.
It takes the nodes identified as anomalous and automatically
reconstructs attack scenarios. Rather than generating multiple
discrete alarms, it provides analysts with a concise set of
attack summary graphs, enabling more efficient investigation.

4.1 Graph Construction

ORTHRUS parses raw logs generated by various capture mech-
anisms (e.g., ETW [1], Linux Audit [4], CamFlow [52], eAu-
dit [59]) to construct the input graph. We focus on three types
of entities and their interactions: processes, files, and netflows.
Table 2 outlines the information we extract from these logs.
We reduce redundancy by performing edge pruning through
Causality Preserved Reduction [68], which removes redun-
dant edges while preserving the sequential information of

Logs Attributes
Process name, cmd
File path
Netflow local address, local port, remote address, remote port
Event subject, object, event type, timestamp

Table 2: Attributes of logs.

events between nodes. Capture systems such as CamFlow [52]
and SPADE [23] can automatically handle such redundancy
reduction during capture. ORTHRUS can operate effectively
on top of various capture mechanisms (see §5).

4.2 Edge Featurization

At this stage, the provenance graph consists of various types
of entities and relations, with entities annotated with textual
information such as file paths, process command lines, and
IP addresses. This information must be converted into feature
vectors, and the provenance graph should be vectorized for the
subsequent graph learning phase. To create these feature vec-
tors, we extract five features and concatenate them to generate
an edge feature vector euv (see Fig. 2).
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Figure 2: Features extracted from system entities to create
edge features for graph learning.

Encoding Types. System entities and the edges connecting
them contain valuable information that should be integrated
into the graph to effectively learn interactions between spe-
cific types of entities. We use one-hot encoding to repre-
sent these types, converting each type into a fixed-size vector
where all positions are zeros except for a single one at the
index corresponding to the specific type. Consequently, for
each edge (u,v) in the graph, three types are extracted: the
type of the event, denoted as tuv, and the types of the two
endpoint entities, denoted as tu and tv.
Encoding Node Attributes. While the type of a system en-
tity is crucial for distinguishing between different types of
entities, such as a process and a file, it is insufficient for differ-
entiating between entities of the same type. For instance, we
expect to see distinct behaviors associated with /etc/passwd
and /users/me/Downloads/file.txt. To address this, we employ
Word2vec [46] to transform textual attributes into feature vec-
tors. We tokenize each textual attribute into a sequence of
words (w1,w2, ...,wk). For example, the file path /users/me/-
Downloads/file.txt would be tokenized into "users, me, Down-
loads, file, txt". The Word2vec model is trained on the corpus
of all textual attributes, embedding each word wi into a fixed-
size vector wi that captures the similarity between words
based on their context. Prior work [18, 75] suggests that sys-
tem entities with similar semantics tend to share a similar
hierarchy. By using the Skip-gram approach, which predicts
context words based on a target word, this hierarchical rela-
tionship within attributes can be effectively captured.

Formally, we derive feature vectors for textual attributes by
computing the average of their words’ embedding:

xv =
n

∑
i=1

wi, (1)

where xv is the feature vector of node v and n is the number

of tokenized words in its attribute. As a result, file paths in the
same parent directory (e.g., /var/log/wdev and /var/log/xdev),
commands of the same process (e.g., firefox -contentproc
-childID 21 and firefox -contentproc -childID 23) or net-
flows on the same network segment (e.g., 128.55.12.110 and
128.55.12.118) are closely mapped in the embedding space.

4.3 Temporal Graph Learning

Provenance graphs are powerful tools for modeling system
activity, capturing critical structural features that enhance the
profiling of user behaviors. These behaviors, whether benign
or malicious, unfold as sequences of ordered events, repre-
sented as temporal edges that effectively encode temporal
information within the graph. Leveraging both spatial and
temporal dimensions is crucial for detecting attacks, as they
inherently unfold across both. ORTHRUS models benign user
behavior at the system level by analyzing interactions between
entities such as processes, files, and sockets, utilizing both
spatial and temporal dimensions.

To achieve this, ORTHRUS employs an encoder-decoder ar-
chitecture specifically designed to capture the spatiotemporal
context of system events within provenance graphs. The en-
coder utilizes a GNN architecture, which has proven effective
in detecting complex attacks [18, 36, 57, 66]. To better cap-
ture the temporal dynamics of provenance graphs, ORTHRUS
employs a dynamic graph structure, which incorporates tem-
poral information by assigning timestamps to each edge, un-
like static graphs that represent only the spatial dimension.
This design enables the encoder to learn embeddings of nodes
and edges that effectively preserve the structural and temporal
patterns generated by system entities.

Our model does not rely on labeled attack data, as such
labels are challenging to obtain in the cybersecurity domain.
Additionally, supervised learning on specific attacks can limit
the ability of a model to generalize to unseen attacks [18].
Therefore, ORTHRUS’ encoder and decoder are trained in
a self-supervised manner on benign data, functioning as an
anomaly detection system. Specifically, the decoder recon-
structs the type of each edge, as shown in Fig. 1, by learning
to infer the event type from its spatiotemporal context. By
training on a substantial amount of benign data, the model op-
timizes this reconstruction process, enabling it to learn benign
user activity without the need for handcrafted labels.

During inference, ORTHRUS calculates reconstruction er-
rors for each incoming edge. Edges with high reconstruction
errors, which deviate significantly from typical benign pat-
terns, are flagged as potentially malicious. The system then
identifies the entities responsible for the attack and the timing
of the attack by analyzing the source nodes of these high-
error edges and their associated timestamps. In a subsequent
step (see §4.5), an attack graph can be constructed from the
predicted nodes and edges, assisting analysts in tracing the
attack’s path and reducing their workload.
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Encoder. To enhance ORTHRUS’ applicability to real-world
scenarios, we propose a lightweight encoder (relatively low
memory and computational complexity) that can learn use-
ful temporal edge embeddings in a stateless manner while
maintaining high detection performance. Unlike most GNN
encoders used by other systems, ORTHRUS’ encoder retains
past events involving each system entity during the aggre-
gation process using a temporal sampling approach. While
KAIROS employs a similar approach, its encoder’s reliance
on state memory leads to significantly higher memory usage
(nearly threefold) and weaker performance, as shown in the
“Encoding” ablation in Table 7. This overhead arises because
KAIROS stores an additional memory vector for each system
entity and directly uses it during GNN propagation, substan-
tially increasing the memory footprint. In contrast, ORTHRUS
leverages the existing node features of entities without requir-
ing additional storage. Although the state vector in KAIROS is
intended to capture long-range dependencies, our ablation ex-
periments show that our simple temporal sampling approach
is sufficient.

For each incoming system event from node u to v occur-
ring at time t, we aim to aggregate the information from
source node u within v. To capture the structural and temporal
patterns surrounding v, the aggregation process should also
consider the edges that occurred prior to time t, ensuring that
node v is aware of its context within the graph. We define the
set of all edges that occurred prior to time t as

St(v) = {(u,v) ∈ E | tuv < t, tuv ∈ T }, (2)

where tuv denotes the timestamp of the edge from node u to
node v, E represents the set of all edges and T denotes the
timestamps associated to edges in E. From St(v), we sample
the N most recent edges that interacted with node v, ensuring
that the temporal information of previous events is preserved.
By using a fixed-size sample for aggregation, the amount of
aggregated information is controlled. This approach enhances
scalability and has proven highly effective in inductive set-
tings, which involve generalizing a model to nodes that were
not encountered during training [26]. We define the sampled
subset as

SN (v) = SAMPLE(St(v),N ,T , t), (3)

where SAMPLE is a function that selects the N last incoming
edges prior to time t.

The structural and temporal interactions within these sam-
pled graphs are captured using an attention-based GNN that
leverages features. ORTHRUS is the first system to incorpo-
rate the types of both system entities and events as features
during encoding. Specifically, system call types are encoded
as one-hot edge features, while node features are constructed
by concatenating the one-hot encoded system entity type (e.g.,
file, process, or socket) with the word embedding of that entity,
as detailed in §4.2. These combined features enrich the graph

with valuable information that the GNN can exploit, along
with the structural and temporal properties gathered during
the previous temporal sampling step. The encoder computes
an embedding for each node by integrating its own features,
the features of its neighboring nodes, and the associated edge
features:

hv = GNN
(
xv,{xu,euv | (u,v) ∈ SN (v)}

)
, (4)

where xu and xv represent the feature vectors of the emitting
node u and receiving node v, respectively, hv is the resulting
embedding of node v, and euv denotes the edge features of
edge (u,v).

Similarly to KAIROS, we employ a variant of the Graph-
Transformer layer introduced by Shi et al. [60] (Equations 5
and 6) as our GNN layer. This GraphTransformer variant is
particularly well-suited for learning on provenance graphs, as
it learns attention coefficients that weigh the importance of
each system entity relative to others. This mechanism allows
each node to focus on the most relevant neighboring informa-
tion during aggregation, enabling attention-based GNNs to
efficiently capture essential features that distinguish between
benign and anomalous instances during detection, thereby
enhancing attribution quality. For every edge (u,v), an atten-
tion coefficient αu,v is calculated using the features of both
the source and destination nodes, along with the edge fea-
tures, and is normalized with a softmax function across all
connected neighbors:

αu,v = softmax
(
(W3xv)

⊤(W4xu +W5euv)√
d

)
, (5)

where d represents the hidden size, and W3, W4, and W5 are
learnable weight matrices. The normalized attention coeffi-
cients are subsequently used in the aggregation step to weigh
the learned features of neighboring nodes:

hv = W1xv + ∑
(u,v)∈SN

αu,v (W2xu +W5euv) , (6)

where W1 and W2 are weight matrices. Our experiments, de-
tailed in §5.4, demonstrate that setting the temporal sampling
parameter N between 10 and 20, with a node embedding size
of z = 32, yields the best average performance across datasets.

Decoder. At this stage, the node embeddings effectively cap-
ture the structural and temporal behaviors specific to each
entity in the provenance graph. The decoder then learns these
embeddings by computing a loss function that optimizes a
given objective. Specifically, the decoder is trained to pre-
dict the edge type for all connected node pairs. By accurately
predicting edge types, the model not only reinforces its un-
derstanding of the interactions between system entities but
also deepens its comprehension of the relationship dynamics
between them. This is essential for distinguishing between
benign and potentially malicious events. The integration of
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node and edge types as features within the graph also signifi-
cantly enhances the model’s ability to predict an event’s type
based on its surrounding context.

We have designed a simple yet effective decoder (Equa-
tion 7) that distinguishes between source and destination enti-
ties by projecting their embeddings through distinct weight
matrices. This approach accounts for the differing semantics
of nodes that emit and receive information, ensuring these
roles are appropriately modeled during training. Formally,
the predicted type of an edge (u,v) is calculated based on the
embeddings of its end nodes such that:

ŷuv = σ(Wg [Wshu,Wdhv]) , (7)

where ŷuv denotes the predicted edge type, [., .] is the concate-
nation operation, σ is the Sigmoid activation function and Wg,
Ws and Wd denote the gate, source and destination weight
matrices, respectively. The entire model is trained by deriving
a loss value from the predicted edge type ŷuv and the ground
truth yuv using the Cross-Entropy (CE) loss across all edge
types to predict:

Luv = CE(ŷuv,yuv). (8)

By optimizing this loss for each benign edge in the training
set, the weights within the encoder and decoder are updated,
allowing ORTHRUS to learn the user’s normal activity. During
inference, anomalous temporal or structural patterns in the
graph will produce embeddings that deviate significantly from
those learned during training, resulting in a high reconstruc-
tion loss. This high reconstruction loss can then be leveraged
in a subsequent detection step to identify anomalies.

4.4 Anomaly Detection
ORTHRUS can learn representations of benign and malicious
nodes directly in the embedding space. Identifying malicious
embeddings with minimal false positives is a crucial chal-
lenge that all PIDSs must address. While some state-of-the-art
techniques [36, 66] detect anomalies based on scores exceed-
ing a manually set threshold, this approach is impractical in
real-world scenarios due to concept drift and changes in un-
derlying data. To address this issue, ORTHRUS employs a
two-step anomaly detection method designed to reduce false
positives.
Automatic Anomaly Thresholding. Suspicious nodes are
flagged when their anomaly score exceeds a threshold, which
is automatically set to the highest anomaly score observed
in the validation set. Typically, an entire day of benign
data is reserved as a validation set, ensuring it remains un-
used during training. In this step, nodes with high anomaly
scores—indicating significant deviation from benign activ-
ity—can be effectively distinguished from other nodes pre-
dicted as benign with lower scores. This approach has proven
highly effective in identifying deviations from normal behav-
ior [29].
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Figure 3: Causality analysis from a detected node p.

Outlier Clustering. To further differentiate between benign
anomalies, which may commonly occur in real-world situ-
ations, and truly malicious anomalies, ORTHRUS applies a
K-means clustering algorithm [30] with two clusters to the
set of suspicious nodes identified through thresholding. This
approach isolates outliers with the highest anomaly scores, ef-
fectively identifying the cluster of the most suspicious anoma-
lies and thereby enhancing attribution quality. The cluster
of the most suspicious anomalies can then be prioritized in
subsequent evaluation steps, while the cluster containing less
suspicious nodes is treated as benign anomalies and not con-
sidered part of an attack. This clustering step significantly
reduces false positives and alleviates the workload for ana-
lysts (see §5.5).

4.5 Attack Reconstruction

ORTHRUS reconstructs the attack associated with nodes
flagged as malicious during anomaly detection and provides
security analysts with attack summary graphs to facilitate in-
vestigation. Intuitively, the attack should correspond to events
within a small subgraph surrounding a malicious node. This
subgraph can be extracted using causality analysis [22, 39].
However, some causal dependencies between benign and ma-
licious nodes also exist (e.g., a firefox instance used to down-
load a piece of malware may continue to perform benign
actions for hours after the initial incident). ORTHRUS con-
ducts a causality analysis for each node p identified during
the anomaly detection phase.
Dependency Analysis. When an anomaly is detected, we ex-
tract a subgraph corresponding to the time window surround-
ing the anomalous event. The duration of this time window
is adjustable, allowing analysts to tailor it based on prefer-
ences, graph size, or the presence of high anomaly scores
near the malicious event. Since attack reconstruction is a post-
processing step with anomaly scores already stored, analysts
can re-run this process using different time window sizes with-
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out incurring significant computational overhead. This flex-
ibility facilitates the identification of attack boundaries and
the discovery of relevant attack patterns. We set the default
time window to 15 minutes, as this duration proved optimal
across most datasets, consistent with previous findings [18].
By limiting the graph size analyzed, this approach reduces
computational costs. Additionally, the extracted time-window
subgraph is transformed into a directed acyclic graph (DAG)
to ensure all nodes along a path maintain causal relationships.
This is achieved by creating multiple versions of nodes as
the state of the corresponding subject or object changes [49].
Next, we identify potential attack entry and exit nodes. An
entry point could be the attacker’s IP address used to infiltrate
the system by delivering a malicious payload, while an exit
point might be a file that has been stealthily relocated to a
hidden directory within the system. An entry node, which
does not have parents, serves as the root of a path. Conversely,
exit nodes are without children, marking the end of a path.
Entries and exits define the boundaries of an attack path. We
identify entry and exit nodes by traversing the graph from p
using backward tracing and forward tracing, as illustrated in
Fig. 3.

We define a dependency graph as the set of all paths be-
tween an entry/exit node and p. In Fig. 3, the dependency
graph De1 includes all paths generated through tracing be-
tween entry e1 and p, while the dependency graph De2 in-
cludes paths traced between exit e2 and p. We repeat this
operation until all dependency graphs between p and all pos-
sible entry/exit are identified.

Critical Dependency Identification. After identifying all
potential entries and exits, along with the dependency graphs
connecting them to p, we select the most anomalous entry
and exit to reconstruct the attack graph. To do this, we assign
a criticality score fC(ei) to each entry/exit ei. The entry and
exit with the highest criticality scores are identified as the
critical entry and critical exit, respectively. The union of their
dependency graphs is then mapped back to the original prove-
nance graph and reported as the attack graph to the security
analyst.

Calculating the Criticality Score. We associate every node
in a dependency graph with two scores: (1) a degree score
fD(u); and (2) an anomaly score fA(u). The degree score
fD(u) measures the relevance of a node u to the dependency
graph:

fD(u) = OutDegree(u)/InDegree(u). (9)

This approach builds on the insight from Fang et al. [22]
that nodes with a high degree score exert strong influence on
data flow, enabling more accurate identification of key nodes
within a dependency graph. The anomaly score fA(u) is the
average reconstruction loss (from §4.3) of all edges connected

to u:

fA(u) =
1

|Eu| ∑
uv∈Eu

Luv. (10)

Here, we build on the insight that attack nodes are clustered
in highly anomalous regions of the provenance graph (i.e.,
regions with high reconstruction loss). Finally, the criticality
score fC(e) of an entry/exit e is calculated as the average of
the normalized degree and anomaly score of all nodes within
the corresponding dependency graph De:

fC(e) =
1
|Ve| ∑

u∈Ve

( f̂D(u)+ f̂A(u)), (11)

where Ve is the set of nodes in the dependency graph De, f̂D(u)
and f̂A(u) denote the degree and anomaly scores normalized
with min-max normalization, to eliminate the difference in
magnitude between scores.

5 Evaluation

ORTHRUS’ design fulfills two objectives: (1) detecting all
attacks occurring within a system, and (2) minimizing the
amount of data that security analysts need to review. Given
the significant imbalance in the datasets (with ratios of ma-
licious nodes ranging from 1:10,000 to 1:1,000,000), it is
crucial to carefully choose our optimization criteria. As Dong
et al. [20] highlight, a practical system must minimize false
positives (i.e., ensure high precision) as long as all attacks
are detected, rather than focusing on identifying every single
node involved in an attack (i.e., high recall). Additionally, the
significant dataset imbalance must be considered when select-
ing evaluation metrics. We assess ORTHRUS’ ability to meet
these objectives. We begin by introducing the datasets and
baselines, we then address the following research questions:
RQ1: Is ORTHRUS able to detect all attacks?
RQ2: What is the quality of attribution?
RQ3: Is ORTHRUS computationally efficient?
RQ4: How do hyperparameters influence performance?
RQ5: How the different ORTHRUS’ components contribute
to overall performance?
RQ6: How robust is ORTHRUS against mimicry attacks?

All training and evaluation were conducted on a server
running Ubuntu 22.04, equipped with a 3.2GHz 16-core AMD
EPYC 7343 CPU, 1024 GB of memory, and an NVIDIA
GA100 GPU with 80GB of memory.

Datasets

To the best of our knowledge, the only large datasets that are
publicly and widely available are those associated with the
DARPA Transparent Computing Program [7]. Other datasets
are either small (Manzoor et al. [44] and Han et al. [27]),
not publicly available (Zeng et al. [72] and Wang et al. [65]),
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or designed primarily for attack matching, lacking sufficient
benign behavior to properly train and evaluate anomaly-based
systems (Alsaheel et al. [13]).

Consequently, we leverage the publicly available
datasets [8, 9] from the DARPA TC program, which are
widely used throughout the literature as benchmarks for
PIDSs [18, 24, 27, 36, 57, 65, 73]. During the TC program,
a team of security experts organized several adversarial
engagements simulating real-world attacks on an enterprise
network targeting critical service infrastructure (e.g., SSH,
email, or web servers). These attacks occurred alongside
benign activities such as browsing the internet, checking
and responding to emails, and performing SSH logins. The
data was captured by three different mechanisms—CADETS,
THEIA, and CLEARSCOPE—operating in three distinct
environments: FreeBSD, Linux, and Android. These datasets
are highly imbalanced, as indicated by the low prevalence of
malicious nodes outlined in the dataset statistics in Table 1.
We give further details about how we split the datasets in
Appendix A.

Evaluated Systems

We select five state-of-the-art PIDSs [18, 29, 36, 57, 66] as
baselines. To the best of our knowledge, this is the most ex-
tensive comparison performed to date, focusing on recent
(2021–2024) anomaly-based systems. We exclude older sys-
tems that cannot provide node-level anomaly scores (e.g.,
UNICORN [27] and Streamspot [44]). We note that our
selected baselines were evaluated against those approaches
and outperform them. We also exclude systems that require
attack samples and/or descriptions (e.g., ATLAS [13] and
ProvG-Searcher [14]), as they cannot be fairly compared to
anomaly-based systems. Furthermore, we exclude systems
that were not fully open-sourced, did not function, or could
not be re-implemented based on the paper (e.g., ProvDetec-
tor [65], ShadeWatcher [73], and R-CAID [25]).2 We ensure
that our comparison includes all three open-source state-of-
the-art anomaly detection systems published in 2024 (i.e.,
Kairos [18], MAGIC [36], and Flash [57]). Further details on
past evaluations are provided in Appendix B.

To ensure consistent evaluation across all baseline methods,
we use the original code for each system whenever possible,
modifying only the final evaluation step to use our evaluation
strategy. We follow the original papers’ instructions and pa-
rameterize the systems to achieve the best possible outcome
under our evaluation methodology.
Kairos [18]. Kairos, based on a TGN encoder [58], is trained
to predict edge types using node state vectors and a 4-layer
MLP decoder. We use the original Kairos code [3], modifying
only its time window-level evaluation to a node-level evalua-
tion (corresponding to the output described in §4.3.1 of their
paper).

2This should not be seen as a reflection on the quality of these systems.

Dataset System E3 E5

CADETS

ORTHRUS ✓ 3/3 ✓ 2/2
Kairos ✗ 0/3 ✗ 0/2
ThreaTrace ✓ 3/3 ✓ 2/2
SIGL ✗ 0/3 ✗ 0/2
MAGIC ✓ 3/3 ✓ 2/2
Flash ✓ 3/3 ✓ 2/2

THEIA

ORTHRUS ✓ 2/2 ✓ 1/1
Kairos ~ 1/2 ✗ 0/1
ThreaTrace ✓ 2/2 ✓ 1/1
SIGL ~ 1/2 ✗ 0/1
MAGIC ✓ 2/2 ✓ 1/1
Flash ✓ 2/2 ✓ 1/1

CLEARSCOPE

ORTHRUS ✓ 1/1 ✓ 3/3
Kairos ✗ 0/1 ~ 1/3
ThreaTrace ✓ 1/1 ✓ 3/3
SIGL ✓ 1/1 ~ 2/3
MAGIC ✓ 1/1 ✓ 3/3
Flash ✗ 0/1 ✓ 3/3

Table 3: Attack detection performance on DARPA datasets.

ThreaTrace [66]. ThreaTrace trains a GraphSAGE [26]
model to predict node type and reports misclassified nodes
as anomalous. We use the publicly available ThreaTrace’s
source code [6].
SIGL [29]. SIGL detects malicious graphs by assigning a
normality score to each node (see §4.5 in their paper) using
a Graph-LSTM architecture [55]. Since SIGL is not open-
sourced, we re-implemented it following prior work [24].
MAGIC [36]. MAGIC employs a Graph Attention Net-
work [64] based autoencoder to embed nodes and performs
outlier detection to identify anomalies We use the publicly
available MAGIC code [5] and their proposed thresholding
method, which relies on ground truth labels.3

Flash [57]. Flash utilizes a GNN model with positional encod-
ing [63] to detect anomalous nodes based on type prediction.
We use the publicly available Flash code [2], which speci-
fies a confidence threshold for each dataset. For datasets that
Flash did not evaluate, we follow the paper’s guidelines to
determine the appropriate threshold.
ORTHRUS-full. We run ORTHRUS from the provenance
graph construction step to the attack reconstruction step
(§4.1~§4.5).
ORTHRUS-ano. We run ORTHRUS without the attack recon-
struction step described in §4.5.

5.1 Attack Detection Performance

First, we evaluate ORTHRUS’ ability to detect all attacks
within each dataset and compare its performance with the
selected baselines. An attack is considered detected if the sys-
tem flags any node directly involved in the attack as malicious.
The results presented in Table 3 demonstrate ORTHRUS’ abil-
ity to detect all attacks. When other systems fail to detect

3This approach may present potential issues, but it is the method followed
by the authors.
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Dataset System TP FP TN FN Precision MCC

E3-CADETS

ORTHRUS-full 25 23 268k 43 0.52 0.44
ORTHRUS-ano 10 0 268k 58 1.00 0.38
Kairos 0 9 268k 68 0.00 0.00
Threatrace 61 252k 16k 7 0.00 0.00
SIGL 0 80 268k 68 0.00 0.00
MAGIC 63 80k 188k 5 0.00 0.02
Flash 13 2.4k 266k 55 0.01 0.03

E3-THEIA

ORTHRUS-full 48 11 699k 70 0.81 0.57
ORTHRUS-ano 8 0 699k 110 1.00 0.26
Kairos 4 0 699k 114 1.00 0.18
Threatrace 88 672k 27k 30 0.00 -0.01
SIGL 1 29 699k 117 0.03 0.02
MAGIC 115 395k 304k 3 0.00 0.01
Flash 22 32k 667k 96 0.00 0.01

E3-CLEARSCOPE

ORTHRUS-full 2 6 111,347 39 0.25 0.11
ORTHRUS-ano 1 1 111k 40 0.50 0.11
Kairos 0 7 111k 41 0.00 0.00
Threatrace 41 88k 24k 0 0.00 0.01
SIGL 1 11k 100k 40 0.00 0.00
MAGIC 40 102k 9.6k 1 0.00 0.00
Flash 0 15k 96k 41 0.00 -0.01

Table 4: Comparison of node-level detection performance on
DARPA E3 datasets. The raw data is available in Appendix F.

attacks, they typically flag nodes in the attack’s vicinity rather
than nodes directly involved. This aligns with §2 hypothesis.

5.2 Attribution Quality

In RQ1, we observed that most state-of-the-art detection sys-
tems can successfully identify the majority of attacks. Next,
we aim to assess the quality of attribution. Using E3-CADETS
as an example, as described in Table 1, we identified 68 nodes
that are directly relevant to the attacks. As shown in Table 4,
ORTHRUS-full flagged a total of 48 nodes (25 true positives,
23 false positives) as malicious, while Flash flagged 2,394
nodes (13 true positives, 2,381 false positives).

Given the imbalanced nature of our datasets (i.e., attacks
constitute a very small portion of system activity) and our
objectives, precision is the most relevant metric, provided that
all attacks are detected. Precision measures the probability
that a node flagged as malicious is actually part of an attack.
ORTHRUS achieves a precision of 52%, compared to less than
1% for Flash.

Metrics like accuracy, ROC-AUC, and F1 score are com-
monly used in binary classification tasks but can yield overly
optimistic results, especially with imbalanced datasets (e.g.,
a classifier that always predicts negatives could achieve over
99% accuracy). In contrast, the Matthews correlation coeffi-
cient (MCC) [45] (see §5.2) is a more reliable measure [56],
as it produces high scores only when predictions perform
well across all four categories of the confusion matrix: True
Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN).

By accounting for both positive and negative elements pro-
portionally, MCC is particularly well-suited for evaluating
binary classifiers on highly imbalanced datasets. An MCC
value of 1 indicates perfect classification, 0 reflects random
guessing, and -1 signifies complete misclassification, where

Dataset System TP FP TN FN Precision MCC

E5-CADETS

ORTHRUS-full 2 10 3M 121 0.17 0.05
ORTHRUS-ano 1 5 3M 122 0.17 0.04
Kairos 0 6 3M 123 0.00 0.00
Threatrace 91 3M 7k 32 0.00 -0.03
SIGL 0 66 3M 123 0.00 0.00
MAGIC 123 3M 541 0 0.00 0.00
Flash 45 34k 3M 78 0.00 0.02

E5-THEIA

ORTHRUS-full 13 2 747k 56 0.87 0.4
ORTHRUS-ano 2 0 747k 67 1.00 0.17
Kairos 0 2 747k 69 0.00 0.00
Threatrace 66 739k 8k 3 0.00 0.00
SIGL 0 23 747k 69 0.00 0.00
MAGIC 1 297k 451k 68 0.00 -0.01
Flash 43 296k 452k 26 0.00 0.00

E5-CLEARSCOPE

ORTHRUS-full 4 8 151k 47 0.33 0.16
ORTHRUS-ano 2 7 151k 49 0.22 0.09
Kairos 1 3 151k 50 0.25 0.07
Threatrace 41 142k 8k 10 0.00 -0.01
SIGL 10 63 151k 41 0.14 0.16
MAGIC 51 139k 11k 0 0.00 0.01
Flash 15 4.6k 146k 36 0.00 0.03

Table 5: Comparison of node-level detection performance on
DARPA E5 datasets. The raw data is available in Appendix F.

all negative samples are predicted as positive and vice versa.
However, MCC is dataset-dependent (i.e., an MCC of 0.5 on
two different datasets does not imply equal performance). It
should only be used to compare the relative performance of
two models on the same dataset. Tables 4 and 5 show that
ORTHRUS outperforms all other baselines in both MCC and
precision.

These results could be attributed to poor threshold selection
by state-of-the-art systems. However, Fig. 4 and our analysis
suggest a different conclusion. Fig. 4 shows that previous
systems struggle to distinguish between malicious and be-
nign nodes, often assigning them similar anomaly scores. In
contrast, ORTHRUS is capable of clearly identifying a few
malicious nodes as outliers (see Fig. 4a). Further analysis
reveals that ThreaTrace, Flash, and MAGIC tend to flag large
areas of the graph containing and surrounding anomalies, cre-
ating an unnecessary volume of data for analysts. SIGL and
Kairos flag nodes in the vicinity of an attack but not necessar-
ily within it. In particular, Kairos identifies nodes occurring
concurrently with attacks, aligning with their evaluation strat-
egy. This supports our hypothesis that the choice of evaluation
approach contributes to system report quality.

5.3 Computational Efficiency
When evaluating the practicality of a PIDS, training runtime
and memory consumption are crucial metrics [20]. Figures
5, 6 and 7 show the efficiency differences between the base-
lines. ORTHRUS often outperforms the other baselines in
both runtime and GPU memory usage due to its lightweight
architecture designed to avoid costly operations.

In contrast, many other models rely on resource-intensive
architectures that negatively impact training time, testing
time, and memory consumption. For instance, Kairos ex-
hibits longer training time (see Tables 10 and 11) due to its

10



(a) ORTHRUS. (b) Threatrace. (c) Kairos.

(d) SIGL. (e) Magic. (f) Flash.

Figure 4: Anomaly detection systems distinguish between benign and anomalous elements by attributing a reconstruction error
to each element.A benign element’s reconstruction error should be close to zero, while an anomalous element’s error should be
large. The discriminative power of an anomaly detection system is defined by its ability to clearly separate benign and malicious
categories. This figures display node reconstruction errors on the E3-CADETS dataset, with benign elements in green and
malicious ones in red. Larger gaps between anomalous and benign nodes indicates better systems. Red circles indicate elements
with the highest anomaly score within each attack.

E3-CADETS
E3-THEIA

E3-CLEARSCOPE

E5-CADETS
E5-THEIA

E5-CLEARSCOPE
0

0.5

1

N
or

m
al

iz
ed

R
un

tim
e

Figure 5: Comparison of normalized training time (the lower
the better) between ■ Orthrus, ■ Kairos, ■ Threatrace,
■ SIGL, ■ MAGIC, and ■ Flash. Normalization is performed
within each dataset by dividing each system’s training time
by the maximum training time for that dataset (raw data in
Appendix F).

use of RNNs to update node memory vectors—an operation
that is computationally expensive and difficult to parallelize
on GPUs. Similarly, SIGL applies RNN operations to ev-
ery node within each time window, leading to high training
times. The use of Graph Attention Networks [64] by MAGIC
in both the encoder and decoder results in high computa-
tional complexity due to the need for calculating attention
weights. Likewise, Flash requires substantial memory as it
maintains feature vector lists for every edge for positional en-
coding, limiting its training to small batches. Finally, although
ThreaTrace achieves the best testing time performance, it
continues training until a True-Negative-based metric meets
a specified threshold, requiring a high number of training
epochs and thus extending training time.
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Figure 6: Comparison of normalized testing times (the lower
the better) between ■ Orthrus, ■ Kairos, ■ Threatrace,
■ SIGL, ■ MAGIC, and ■ Flash. Normalization is performed
within each dataset by dividing each system’s testing time
by the maximum testing time for that dataset (raw data in
Appendix F).

5.4 Hyperparameters Study
Hyperparameters are critical to the success of any machine
learning model. Fig. 8 illustrates the impact of different hy-
perparameters on the number of detected attacks, including a
breakdown of true positives (TPs) and false positives (FPs).
The overall detection performance is summarized by the
MCC score, and the evolution of memory consumption is
also shown.
Node Dropout: Regularization through node dropout signif-
icantly enhances detection performance during ORTHRUS’
training. While most dropout rates yield similar results, we
observe an increase in true positives when the dropout rate is
set to 25%.
Learning Rate: Choosing the right learning rate is essential
for smooth training. Our experiments show that a learning
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Figure 7: Comparison of normalized memory usage (the lower
the better) between ■ Orthrus, ■ Kairos, ■ Threatrace,
■ SIGL, ■ MAGIC, and ■ Flash. Normalization is performed
within each dataset by dividing each system’s GPU memory
footprint by the maximum GPU memory footprint for that
dataset (raw data in Appendix F).

rate of lr = 1e−4 delivers optimal results across datasets.
Word2vec Embedding Size (x): The Word2vec embedding
size must be large enough to capture the semantics of tokens
representing file paths, command lines, or IP addresses, with-
out being so large that it hinders generalization. For example,
embedding sizes of x = 32 or x = 64 result in 10 true positives
with no false positives, while increasing the size to x = 128 or
x = 256 decreases true positives and increases false positives.
This highlights the critical role of the Word2vec embedding.
Additionally, we observe a significant increase in memory
usage as the embedding size increases.
GNN Embedding Size (z): The GNN embedding size is
essential for capturing the structural and temporal features of
the graph through message passing. A size of z = 32 performs
well on small datasets, while z = 64 typically yields better
results on larger datasets.
Neighborhood Size (N ): The neighborhood size controls
the amount of information aggregated during each message-
passing step. A small neighborhood (e.g., N = 5) detects 0
TP, while larger values (10 ≤ N ≤ 50) detect between 6 and
10 TPs.

These experiments demonstrate that ORTHRUS can detect
all three attacks in this dataset in most cases, even with sig-
nificant changes in hyperparameter values. This highlights
ORTHRUS’ robust detection capability, which is not heavily
reliant on hyperparameter tuning. Our findings suggest that
these hyperparameter trends are consistent across datasets,
enabling ORTHRUS to effectively detect attacks on diverse
datasets with minimal tuning.

5.5 Ablation Study

We conduct an ablation study to evaluate the individual contri-
butions of each component in ORTHRUS. We systematically
replace or remove one component at a time. The specific
ablations are detailed in Table 6, with the results of these

Component With Component (✓) Without Component (✗)
Featurization ORTHRUS’ Word2vec embedding

(§4.2)
Hierarchical hashing as in
Kairos

Encoding ORTHRUS’ encoder (§4.3) Kairos’ TGN encoder
Clustering ORTHRUS’ anomaly detection algo-

rithm (§4.4)
Automatic anomaly
thresholding only

Reconstruction ORTHRUS’ attack reconstruction al-
gorithm (§4.5)

No tracing algorithm used

Table 6: Description of the ablations performed.

Dataset Featurization Encoding Clustering Reconstruction TP FP Precision Memory

E3-THEIA

✗ ✓ ✓ ✓ 51 13 0.79 2.03GB
✓ ✗ ✓ ✓ 41 772 0.05 5.75GB
✓ ✓ ✗ ✓ 48 11 0.81 2.03GB
✓ ✓ ✓ ✗ 8 0 1.00 2.03GB
✓ ✓ ✓ ✓ 48 11 0.81 2.03GB

E5-THEIA

✗ ✓ ✓ ✓ 0 155 0.00 4.23GB
✓ ✗ ✓ ✓ 13 53 0.20 11.10GB
✓ ✓ ✗ ✓ 20 11,420 0.00 4.23GB
✓ ✓ ✓ ✗ 2 0 1.00 4.23GB
✓ ✓ ✓ ✓ 13 2 0.87 4.23GB

Table 7: Ablation results. The darker the precision score, the
more important a component is.

experiments on the E3-THEIA and E5-THEIA datasets pre-
sented in Table 7.

First, replacing ORTHRUS’ Word2vec Featurization compo-
nent has minimal impact on the smaller E3-THEIA dataset but
is essential for E5-THEIA, which features larger and denser
provenance graphs. Similarly, removing ORTHRUS’ Cluster-
ing component has no effect on E3-THEIA but is crucial for
E5-THEIA, where standalone thresholding detects only two
true positives. Substituting ORTHRUS’ encoder with the TGN
encoder from Kairos negatively affects performance on both
datasets, as seen by the significant increase in false positives
(this corroborates the lower detection quality of Kairos seen
in Fig. 4). Additionally, using a memory vector for each node
with TGN results in higher memory consumption. Lastly,
while the Reconstruction component in ORTHRUS-full gener-
ates more false positives than ORTHRUS-ano, it helps analysts
by identifying significantly more true positives. The use of
this component remains optional, depending on the specific
needs of the security analyst.

5.6 Robustness Against Mimicry Attacks

To evaluate ORTHRUS’ robustness against adversarial attacks,
we conducted adversarial mimicry attacks on PIDSs, follow-
ing the methodology outlined by Goyal et al. [24]. Their
research highlights the vulnerability of granular PIDSes, such
as StreamSpot [44], Unicorn [27], ProvDetector [65], and
SIGL [29], to adversarial attacks. This strategy involves ma-
nipulating the distributional graph encoding to execute an
evasion attack on PIDSs, aiming to create deceptive similari-
ties between the node neighborhood distributions in the attack
graph and those in benign provenance graphs. Following on
previous work [18, 57] footsteps, we use the publicly avail-
able code from Goyal et al. to manipulate the E3-CADETS
dataset. We show the effect it has on ORTHRUS’s detection
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Figure 8: Hyperparameters study of ORTHRUS on E3-CADETS. We show ■ TP, ■ FP, ■ detected attacks, ■ memory
consumption (GB), and ■ MCC.
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Figure 9: Effect of adversary mimicry attacks [24] against
our system. We show the number of edges added to the attack
graph (x-axis) and the number of ■ TP and ■ FP (y-axis).

performance in Fig. 9. ORTHRUS proves robust against such
manipulation. This confirms recent findings from Cheng et
al. [18] and Rehman et al. [57] that more complex GNN-based
detection strategies are resistant to such attacks.

6 Discussion, Limitations & Future Work

Open-source Availability. While the literature presents a
wealth of innovative PIDSs, not all related code has been
publicly released, often for legitimate reasons (e.g., Shade-
Watcher [73] relies on proprietary software). Sadly, re-
implementing a system based solely on the descriptions pro-
vided in a paper is often challenging, limiting the scope of
evaluations that can be conducted. We strongly encourage
the community to adopt open-sourcing as the default practice.
In line with this, we have made our own artifacts publicly
available (see §9).
Analysis of False Positives. On certain datasets, ORTHRUS
produces false positives. Examining their positions in the
graph reveals patterns that inform potential improvements.
We observe that false positives frequently occur within the
one-hop neighborhood of malicious nodes. For example, in

E5-CLEARSCOPE, 5 of the 7 false positives detected by OR-
THRUS-ano are netflow nodes sharing the same IP address as
attack nodes.4 The two others are temporally distant and lack
direct connections. The false positives within the surrounding
of attacks arise because GNN message passing propagates
malicious signals to neighboring nodes via outgoing edges,
a phenomenon previously noted in THREATRACE [66]. A
common mitigation is to adopt an evaluation strategy that
labels nodes within the two-hop neighborhood of malicious
nodes as malicious. However, as discussed in §2, this is sim-
ply ignoring the core issue and directly leads to systems with
reduced attribution quality. Addressing this limitation through
better false-positive mitigation strategies remains an open and
critical research direction.
Impact of the Capture Mechanism. In Table 5, we observe
poor performance of ORTHRUS and other systems on E5-
CADETS. Several factors may explain this: (1) each capture
system (CADETS, THEIA, CLEARSCOPE) represents sys-
tem execution differently and reports varying information
(e.g., CADETS omits the paths of most files and processes,
while CLEARSCOPE lacks process paths and remote ad-
dresses of netflows); (2) the attacks in each dataset differ,
with some being more stealthy than others; and (3) some
graph elements appear to be missing, possibly due to crashes
reported in DARPA’s documentation or flaws in the capture
mechanism, as identified by Sekar et al. [59]. Understanding
the influence of capture mechanisms on downstream intru-
sion detection performance is an important research question,
beyond the scope of this paper.
The Importance of Training Time. Discussions with col-
leagues in industry have emphasized the importance of regu-
larly retraining intrusion detection models to address concept
drift. As new software is deployed or updates are rolled out,

4This could be benign activity from the attacker machine and/or attack
steps not appearing in the DARPA textual ground truth (see Appendix C).
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the number of false positives tends to increase, necessitating
retraining. While machine learning techniques exist to man-
age these issues, they have not been thoroughly explored in
the context of PIDS and cannot be readily applied [18].

As shown in §5.3, ORTHRUS is the fastest PIDS among
the systems we evaluated, making it well-suited for regular
retraining. However, a comprehensive evaluation of this prob-
lem, along with various approaches to address it, remains
difficult due to the lack of dedicated datasets [18]. We leave
such exploration for future work.

7 Related Work

For a comprehensive overview of provenance-based security,
we refer readers to the SoK by Inam et al. [35].
Anomaly Detection. Early anomaly-based works [27, 44, 65]
identify and report coarse-grained anomalies by clustering
statistical graph summaries. More recent approaches [18,
29, 36, 66, 73] have leveraged advances in learning graph-
structured data to model fine-grained, contextualized relation-
ships between nodes in provenance graphs. ThreaTrace [66]
and Flash [57] train GraphSAGE [26] and GNN models,
respectively, to predict node types and report misclassified
nodes as anomalous. ThreaTrace removes correctly predicted
nodes and re-trains on misclassified nodes until none re-
main. Flash incorporates positional encoding from Transform-
ers [63] into the node embedding step to capture temporal
information from the sequential order of tokens. MAGIC [36]
leverages a masked auto-encoder, utilizing a Graph Attention
Network [64] in both the encoder and decoder to embed node
features, identifying anomalies using a K-D tree search tech-
nique. Kairos [18] models long-term temporal relationships of
system entities by assigning them state vectors using Tempo-
ral Graph Networks (TGNs) [58], then detects malicious time
windows when their scores exceed a specified threshold. Sim-
ilarly, SIGL [29] captures temporal dependencies of entities
using a Graph Long Short-Term Memory (Graph LSTM) [55]
model to detect malicious software installations. R-CAID [25]
combines GNN and Root Cause Analysis (RCA) techniques
to learn global causal relationships between nodes and their
root causes. While state-of-the-art methods have made sig-
nificant progress in fine-grained anomaly detection, they of-
ten overlook the attribution quality of detection signals. OR-
THRUS is the first to achieve meaningful node-level detection
without overwhelming false positives.
Attack Investigation. Attack investigation is the oldest ap-
plication of provenance in security [39]. OmegaLog [34]
and ALchemist [71] combine system-layer provenance data
with higher-layer application logs to provide more seman-
tic context for event investigation. UIScope [70] focuses on
reconstructing Graphical User Interface-related attacks by
correlating provenance data with User Interface events. Re-
cent alert investigation systems based purely on provenance
data, such as DEPIMPACT [22], NoDoze [31], Swift [33],

and ProTracker [42], generate alerts by assigning scores to
events based on their causal context. NoDoze and Swift as-
sign anomaly scores to each event in the provenance graph
based on the frequency of related events. ProTracker com-
putes priority scores for system events based on their rarity
and fanout, while DEPIMPACT calculates edge scores using
multiple features, including timing, data flow amount, and
node degree. They then aggregate the scores along neighbor-
ing edges to reconstruct the attack graph. ORTHRUS tightly
integrates anomaly detection and attack investigation into a
single system.

8 Conclusion

We identified limitations in the evaluation strategy of
provenance-based intrusion detection systems, showing that
this has led to the design of systems with poor attribution
quality, which directly contributes to security analysts’ alert
fatigue. We proposed an alternative, conservative evaluation
strategy that favors systems generating fewer alerts. We then
designed a lightweight anomaly detection pipeline, ORTHRUS,
and demonstrated its superiority over state-of-the-art systems
on well-established benchmark datasets.

9 Compliance with the Open Science Policy

Datasets Availability. The DARPA datasets are publicly
available [8, 9] and come with textual description of the at-
tacks. We manually analyzed the datasets and annotated nodes
(as benign or part of an attack). The annotations are pub-
licly available at https://github.com/ubc-provenance/
ground-truth. To the best of our knowledge this is the first
time such annotations are publicly released.
Software Artifacts Availability. The source code is pub-
licly available at https://github.com/ubc-provenance/
orthrus. We also provide detailed instructions to reproduce
the results presented in §5.

10 Ethics Considerations

To the best of our knowledge this work does not raise any
ethical issues. All experiments have been performed on pub-
licly available datasets that have been acquired in an ethical
manners and not contain any sensitive information.
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A Datasets Details
We summarize in Table 8 how we split the datasets for train-
ing, validation, and detection.

B Past Evaluations
Table 9 shows anomaly detection systems we select to com-
pare against ORTHRUS. We use the same node-level detection
performance with the same evaluation approach to ensure a
fair comparison. Based on our knowledge, this is the most
comprehensive comparison to date.
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Datasets Training Data
(yyyy-mm-dd)

Validation Data
(yyyy-mm-dd)

Test Data
(yyyy-mm-dd)

E3-CADETS 2018-04-03/04/05/07/08/09/10 2018-04-02

2018-04-06
2018-04-11
2018-04-12
2018-04-13

E3-THEIA 2018-04-02/03/04/05/06/07/08 2018-04-09
2018-04-10
2018-04-12
2018-04-13

E3-CLEARSCOPE 2018-04-03/04/05/07/08/09/10 2018-04-02
2018-04-11
2018-04-12

E5-CADETS 2019-05-08/09/11 2019-05-12
2019-05-16
2019-05-17

E5-THEIA 2019-05-08/09/10 2019-05-11
2019-05-14
2019-05-15

E5-CLEARSCOPE 2019-05-08/09 2019-05-11
2019-05-14
2019-05-15
2019-05-17

Table 8: DARPA data used for training, validation, and test.
Bold days refer to as attack days in which both benign and
attack activities exist. The remaining days are benign days
with only benign activities.

T
hreaTrace

[66]

SIG
L

[29]

K
airos

[18]

M
A

G
IC

[36]

Flash
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2016 Steamspot [44] ✓ ✓ ✓

2017 Frappuccino [28] ✓

2020 Unicorn [27] ✓ ✓ ✓ ✓
ProvDetector [65] ✓

2021 Prov-Gem [37] ✓

2022 SIGL [29] ✓
ThreaTrace [66] ✓ ✓ ✓ ✓

2024
Kairos [18] ✓
MAGIC [36] ✓
Flash [57] ✓

Table 9: Comparison of baselines used in past publications.
Horizontal – systems used as baselines in past evaluations.
Vertical – ORTHRUS and past publications used as baselines
in this paper.

C Ground Truth Construction
We constructed our ground truth by loading the DARPA
datasets into a database. Using the textual ground truth de-
scriptions provided by the DARPA team [8, 9], we queried
nodes based on name and timestamps. The results were man-
ually analyzed to remove incorrect matches (e.g., excluding
instances of software unrelated to the attacks when multiple
instances were running).

The textual descriptions occasionally omitted nodes, caus-
ing attacks to be fragmented into multiple subgraphs. To
address this, we retrieved the shortest paths connecting nodes
across these subgraphs, merging them into a single, larger
attack graph. Finally, we manually reviewed the results again,
removing any erroneous nodes or edges.

When uncertain about a graph element, we erred on the side
of caution and excluded it (this occured only for a few nodes
on two datasets). In the worst-case scenario, this may lead
to underestimating a system’s detection performance. How-
ever, as discussed in §2, we believe this approach is prefer-
able to overestimating performance, as it encourages systems

(a) Neighborhood. 7,661 mali-
cious nodes.

(b) Batch. 16,425 malicious
nodes.

(c) Source. 5,248 malicious
nodes.

(d) Ours. 58 malicious nodes.

Figure 10: Visualized ground truth for attack Firefox Back-
door w/ Drakon In-Memory on E3-THEIA. We note that the
only Fig. 10d is legible.

evaluated against such baselines to achieve better attribution
quality. Once the methodology was established, the process
required only a few days to complete. Researchers applying
this methodology should be able to generate similar ground
truth results. To support reproducibility, we have made the
ground truth publicly available; see §9.

D Example Ground Truth Vizualiation
Fig. 10 shows the visualization of an E3-THEIA attack for
four approaches above. Three current evaluation approaches
label too many irrelevant nodes, making it difficult to visually
present and analyze reported attacks, even when a system
performs well in detecting and reconstructing them.

E Matthews Correlation Coefficient
The Matthews Correlation Coefficient [45] is used in Machine
Learning to measure of the quality of binary classifications.

MCC =
T P×T N −FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(12)

F Raw Results
Table 10 and Table 11 show the raw data presented in Table 4,
Table 5, Fig. 5, and Fig. 7.
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Dataset System TP FP TN FN Precision MCC Training Time Testing Time GPU Memory

E3-CADETS

ORTHRUS-full 25 23 268,062 43 0.52 0.44 4min40 52min31 3.82GBORTHRUS-ano 10 0 268,085 58 1.00 0.38
Kairos 0 9 268,076 68 0.00 0.00 22min49 36min26 3.93GB
Threatrace 61 252,117 15,968 7 0.00 0.00 28min28 21min51 5.22GB
SIGL 0 80 268,005 68 0.00 0.00 4h48 1h15 10.07GB
MAGIC 63 79,766 188,319 5 0.00 0.02 13h18 13h01 4.22GB
Flash 13 2,381 265,704 55 0.01 0.03 10h33 8h52 19.18GB

E3-THEIA

ORTHRUS-full 48 11 699,166 70 0.81 0.57 3min58 41min39 2.03GBORTHRUS-ano 8 0 699,177 110 1.00 0.26
Kairos 4 0 699,177 114 1.00 0.18 24min21 1h07 2.53GB
Threatrace 88 671,883 27,294 30 0.00 -0.01 10min19 8min17 4.51GB
SIGL 1 29 699,148 117 0.03 0.02 14h07 24h04 10.44GB
MAGIC 115 394,906 304,271 3 0.00 0.01 11h39 11h41 5.35GB
Flash 22 32,082 667,095 96 0.00 0.01 6h51 5h30 36.93GB

E3-CLEARSCOPE

ORTHRUS-full 2 6 111,347 39 0.25 0.11 2min50 5min56 0.65GBORTHRUS-ano 1 1 111,352 40 0.50 0.11
Kairos 0 7 111,346 41 0.00 0.00 9min52 16min25 0.74GB
Threatrace 41 87,501 23,852 0 0.00 0.01 3min55 2min04 4.90GB
SIGL 1 11,372 99,981 40 0.00 0.00 1h01 31min17 9.71GB
MAGIC 40 101,737 9,616 1 0.00 0.00 1h37 36min56 9.75GB
Flash 0 15,137 96,216 41 0.00 -0.01 19h01 18h16 11.60GB

Table 10: Comparison of node-level detection performance on DARPA E3 datasets.

Dataset System TP FP TN FN Precision MCC Training Time Testing Time GPU Memory

E5-CADETS

ORTHRUS-full 2 10 3,111,245 121 0.17 0.05 42min35 6h01 21.10GBORTHRUS-ano 1 5 3,111,250 122 0.17 0.04
Kairos 0 6 3,111,249 123 0.00 0.00 4h03 10h22 23.85GB
Threatrace 91 3,104,018 7,237 32 0.00 -0.03 5h45 3h05 17.31GB
SIGL 0 66 3,111,189 123 0.00 0.00 38h00 36h58 22.72GB
MAGIC 123 3,110,714 541 0 0.00 0.00 77h13 10h38 79.36GB
Flash 45 33,941 3,077,314 78 0.00 0.02 101h26 105h06 80.19GB

E5-THEIA

ORTHRUS-full 13 2 747,381 56 0.87 0.4 14min30 6h29 4.23GBORTHRUS-ano 2 0 747,383 67 1.00 0.17
Kairos 0 2 747,381 69 0.00 0.00 1h02 3h27 4.16GB
Threatrace 66 739,322 8,061 3 0.00 0.00 2h51 51min13 11.59GB
SIGL 0 23 747,360 69 0.00 0.00 40h20 37h59 24.44GB
MAGIC 1 296,554 450,829 68 0.00 -0.01 13h21 10h16 16.95GB
Flash 43 295,729 451,654 26 0.00 0.00 47h50 51h37 80.18GB

E5-CLEARSCOPE

ORTHRUS-full 4 8 150,666 47 0.33 0.16 22min19 3h30 1.72GBORTHRUS-ano 2 7 150,667 49 0.22 0.09
Kairos 1 3 150,671 50 0.25 0.07 1h06 3h02 2.26GB
Threatrace 41 142,487 8,187 10 0.00 -0.01 44min53 37min46 5.94GB
SIGL 10 63 150,610 41 0.14 0.16 82h50 69h16 16.38GB
MAGIC 51 139,385 11,289 0 0.00 0.01 11h39 4h03 48.24GB
Flash 15 4,552 146,122 36 0.00 0.03 25h34 24h00 11.60GB

Table 11: Comparison of node-level detection performance on DARPA E5 datasets.
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