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Abstract—Third-party advertising and tracking (A&T) are
pervasive across the web, yet user exposure varies significantly
with browser choice, browsing location, and hosting jurisdiction.
We systematically study how these three factors shape tracking
by conducting synchronized crawls of 743 popular websites from
8 geographic vantage points using 4 browsers and 2 consent
states. Our analysis reveals that browser choice, user location,
and hosting jurisdiction each shape tracking exposure in distinct
ways. Privacy-focused browsers block more third-party trackers,
reducing observed A&T domains by up to 30% in permissive
regulatory environments, but offer smaller relative gains in
stricter regions. User location influences the tracking volume, the
prevalence of consent banners, and the extent of cross-border
tracking: GDPR-regulated locations exhibit about 80% fewer
third-party A&T domains before consent and keep 89-91% of
A&T requests within the EEA or adequacy countries. Hosting
jurisdiction plays a smaller role; tracking exposure varies most
strongly with inferred user location rather than where sites are
hosted. These findings underscore both the power and limitations
of user agency, informing the design of privacy tools, regulatory
enforcement strategies, and future measurement methodologies.

I. INTRODUCTION

Third-party advertising and tracking (A&7) underpin much
of the web’s business model, with these technologies present
across the web ecosystem [1} [2 [3]. These mechanisms en-
able cross-site profiling, where advertisers and intermediaries
infer browsing behavior, interests, and demographics from
identifiers and interaction traces [2, |4]. Browsers exercise
substantial control over user privacy by mediating page exe-
cution and network requests, exposing levers to shape storage
and communication [4] |5]. This technical position allows
browsers to block or rewrite requests, restrict cookies and
other state, and deploy anti-fingerprinting and anti-tracking
defenses [6} [7]]. However, dominant browsers are developed by
firms with significant advertising businesses, raising questions
about incentive alignment between privacy protections and
advertising addressability, motivating empirical evaluation of
what users actually experience.

Different jurisdictions have introduced privacy regulations
constraining tracking and data flows, with varying obligations
and enforcement models [8} 9} [10]. The EU’s GDPR empha-
sizes opt-in consent for tracking, whereas US laws like CCPA
and CPRA center opt-out from ‘“sale” or “sharing” [} [10]].
Empirical audits report substantial variation in compliance
and dark patterns in consent interfaces, producing geographic
disparities in effective privacy protection [9, [11} [12} [13].
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These observations point to a methodological gap: prior
work has not systematically compared the relative and joint ef-
fects of browser choice, user location, and hosting jurisdiction
on tracking exposure using a single, controlled measurement
design. Cookie banners and vendor responses may differ for
EU vs. non-EU users [14} [15]; trackers may react to IP-level
geo signals [12] [16]; and sites may deploy jurisdiction-wide
policies based on where they host. We therefore ask three
interconnected questions, ordered by decreasing user agency:

« RQ1: Effect of browsers—How do different browsers
affect third-party A&T exposure?

o RQ2: Effect of user location—How does a user’s geo-
graphic location (as inferred by sites) influence A&T?

+ RQ3: Effect of hosting location—How does a website’s
hosting jurisdiction affect third-party A&T practices?

We begin with browser choice (RQ1), which users control
directly; proceed to user location (RQ2), which users can
sometimes influence (e.g., via VPNs); and conclude with host-
ing jurisdiction (RQ3), a structural factor beyond individual
control. This ordering lets us assess how each lever contributes
to observed tracking exposure under matched conditions. To
support this, we design RegTrack, a consent-aware factorial
measurement framework varying browser and browsing loca-
tion over a shared list of popular sites, using synchronized
crawls from 8 vantage points and attributing third-party re-
quests to known A&7 domains. Our main contributions are:

e« We design RegTrack, a multifactor, consent-aware mea-
surement framework systematically studying the effects of
browser, user location, and website hosting jurisdiction on
third-party A&T.

« We collect and analyze a dataset spanning 8 geographic van-
tage points, 4 browsers, and 743 popular websites, enabling
within-factor contrasts and interaction analysis.

e We compare the magnitude of browser-, location-, and
hosting-related differences in tracking exposure and identify
where user-controllable choices provide meaningful leverage
versus where structural forces dominate.

Our measurements yield three main findings. First, browser
choice matters most in permissive environments: privacy-
focused browsers (e.g., Brave) substantially reduce tracking
in the US and opt-out contexts, while differences narrow in
stricter regions like the EU. Second, user location has a large
effect on baseline tracking and additional tracking unlocked
after clicking “Accept,” with EU vantages showing lower
pre-consent exposure but large post-consent jumps. Third,



hosting jurisdiction plays a secondary role: most observed
discrimination in banners and tracking behavior is driven by
inferred user location rather than website hosting location.

II. BACKGROUND AND MOTIVATION

The web economy relies on embedded 3rd-party services for
advertising, analytics, and personalization, enabling cross-site
identification and profiling at scale [2, 4} [17]. These services
increasingly use request- and redirect-based techniques and
Ist-party integrations rather than only classic 3rd-party cook-
ies [, 16]. As our goal is to attribute differences across browser
choice, user location, and hosting jurisdiction, we focus on
network-visible outcome measures comparable across factors.

We define tracking exposure as the set of 3rd-party apex
domains contacted during page loads, labeled as A&T or
“other” using curated public lists, along with the prevalence of
consent banners and changes between pre- and post-consent
conditions [1]]. This definition favors coverage and comparabil-
ity while acknowledging that some behaviors (payload content,
fingerprinting) are not directly observable at network level.
Since user studies show 72% choose “Accept all” [18], we
treat no-click and accept-all as separate experimental states.

Browser choice is the lever users control most directly;
mainstream browsers differ in default protections (3rd-party
cookie restrictions, storage partitioning, anti-fingerprinting)
that reshape request-level exposure [[19]. User location con-
ditions banner presentation and when 3rd-party requests are
initiated, with field studies documenting location-dependent
consent surfaces [8, [10]. Hosting jurisdiction shapes data
recipients and applicable legal regimes; large-scale mapping
shows cross-border transfers are common [1} 20]. RegTrack
manipulates these three factors within a single framework,
enabling contrasts respecting their user agency ordering.

Prior work typically vary one factor at a time or rely on
setups hard to compare across papers [8 20, 21]]. Our 4x8
factorial design with two consent states reveals how browser
choice, user location, and hosting jurisdiction each affect 3rd-
party A&T exposure when other factors are held constant.

III. MEASUREMENT METHODOLOGY

To compare how browser, user location, and hosting juris-
diction shape third-party A&T, we built RegTrack, a consent-
aware factorial framework concurrently crawling websites
from eight vantage points using four browsers and two con-
sent states (no-click and accept-all) (Fig. T). Each (browser,
location, site, consent) configuration runs in a fresh container,
recording HTTP requests to HAR files and screenshots.

A. Measurement Variables

Browsers. We evaluate four mainstream desktop browsers
with distinct privacy postures: Chrome, Edge, Firefox, and
Brave, covering market-dominant and privacy-focused op-
tions [19] 22]] (market shares: 65.54%, 13.89%, 6.36%, and
1%). All crawls run on Linux in default configuration without
extensions to capture “out of the box” exposure [23].

Browsing locations. We deploy crawls from eight regions:
California (USA), Ohio (USA), Quebec (Canada), Mumbai
(India), Singapore, Frankfurt (Germany), Paris (France), and
Dublin (Ireland), covering major privacy regimes including
GDPR [24], CCPA [25], PDPA [26], PIPEDA [27], and
DPDPA [28]. We treat these locations as representative bundles
of legal obligations, enforcement practices, and consent norms,
interpreting results at broad regulatory cluster levels (e.g.,
GDPR vs. opt-out frameworks).

Websites. To avoid regional bias, we combine globally
and regionally popular sites: top-1K Tranco [29] augmented
with top-100 per country (US, IN, SG, DE, FR, IE)
from Cloudflare Radar [30Q], filtered to top-100K Tranco
ranking, yielding 1,005 unique domains. Five additional
domains (ovh.net, hotstar.com, truecaller.com,
swiggy.com, google.ie) are from the country lists.

B. Crawling Architecture

Our crawler is built on Browsertime [31], running each
visit in a fresh Docker container to ensure no client-side state
persists. For each configuration, RegTrack loads the page,
records network requests (HAR), and captures a screenshot.
We focus analysis on apex domains (stable across visits) while
using FQDNs for blocklist matchingﬂ We visit each site 10
times per configuration; apex counts converge after roughly
five visits, with additional visits providing robustness against
transient failures.

C. Cookie Consent Handling

Cookie-consent banners can gate content access and sub-

stantially change which third-party requests are issued [8]]. For
each site and configuration, RegTrack performs two indepen-
dent passes (repeated 10 times): a no-click pass without con-
sent interface interaction, and an accept-all pass selecting the
most affirmative option when a banner is present. We choose
the most affirmative option as it provides an upper bound on
tracking exposure and represents realistic user behavior (72%
select “OK” or equivalent [18]).
Banner interaction. We automate “accept” clicks using CMP-
specific selectors (Didomi, Quantcast, OneTrust, CookieBot)
with text-based heuristic fallback for affirmative labels from a
curated lexiconE] The detection logic is injected via Browser-
time’s JavaScript hooks and executed across all iframes. We
manually audited a sample of pages to remove lexicon entries
producing false positives. RegTrack successfully interacts with
banners on 91-95% of banner-using sites; remaining cases are
treated as no-click.

D. Data Cleaning
We exclude visits where the intended page did not load

due to CAPTCHAs, block pages, or network errors. To detect

IE.g., we classify ads.google.com rather than google. com.
2We manually curated the lexicon by sampling sites with banners, collecting
acceptance strings, and translating them into represented languages.
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Fig. 1: Overview of RegTrack. We fix browsers, locations, and consent states, then crawl websites from per-location VMs,
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Fig. 2: Total number of A&T, by browser, after accepting all
cookies in US-Ohio (plain) and France (striped).

such cases at scale, we classify screenshots using open-
source vision-language models. After evaluating several mod-
els against 400 manually labeled screenshots [§C), we select
Llama4, which achieves 99% accuracy (Cohen’s x = 0.94).
A site is included if it loads successfully in > 5/10 visits
for every (browser, location, consent) configuration. Of the
initial 1,005 domains, 26% fail this criterion for at least one
configuration (often due to CAPTCHAs or geo-blocking). Our
final cleaned dataset contains 743 sites.

E. Domain Classification

From each HAR file, we extract all requested domains and
classify them. A domain is first-party if its apex matches the
visited site’s pay-level domain; otherwise, it is third-party.
Third-party domains are classified as A&T or “other” using
a union of widely used public blocklists (EasyList/EasyPri-
vacy [32l 33], AdGuard [34], and others; full list in @I) If a
domain appears on any list, we flag it as potentially A&T-
related; remaining third-party domains are labelled “other.”
Since these blocklists are primarily designed for URL-level fil-
tering, our domain-level matching may introduce measurement
error; we discuss this limitation and our mitigation in

IV. DATA ANALYSIS AND RESULTS
We now present our empirical results, organized around the
three levers of user agency and the research questions in
A. Browser Choice

Browser choice represents the factor over which users ex-
ercise the most direct control. Unlike user location or website

hosting jurisdiction, users can freely select and switch between
browsers with minimal technical barriers, legal restrictions,
or geographic constraints. However, users typically commit
to a single browser due to ecosystem lock-in and familiarity,
making this choice particularly consequential for their long-
term tracking exposure [335].

To understand how browser choice affects the number of
third-party A&T domains, we compare two regulatory con-
texts: USA—Ohio, with relatively permissive privacy regula-
tions, and France, governed by the GDPR. In USA-Ohio,
Brave offers the lowest exposure, triggering 31% fewer A&T
domain than Chrome, the browser with the highest track-
ing levels, as illustrated in On the other hand, the
differences between browsers are less pronounced in France.
While Brave still yields the lowest exposure, triggering 13%
fewer A&T domains than Chrome, the gap between browsers
narrows considerably in this GDPR-regulated region.

Browser choice significantly affects third-party A&T ex-
posure, but other factors, specifically user location itself,
appear to play an important role. We therefore turn to our
second research question, examining how user location shapes
tracking practices independent of browser selection.

B. Effect of User Location

We now turn to user location, a factor users can only
partially influence (for example, via VPNs) but which de-
termines the legal regime that applies to tracking and data
protection. We concurrently visit the same 743 websites from
eight vantage points spanning North America (Ohio, Califor-
nia, Quebec), Europe (France, Germany, Ireland), and Asia
(Mumbai, Singapore). Unless otherwise noted, we focus on
Chrome as a high-tracking baseline as shown in and
we distinguish between no-click and accept-all consent states.
Cookie banner prevalence and tracking contribution.
reports, for each vantage point, the fraction of websites dis-
playing a cookie banner (inner circle) and their contribution
to total third-party A&T requests (outer circle). Banner preva-
lence varies substantially: EU vantages exhibit the highest
rates (60-61%), consistent with GDPR’s consent require-
ments, while permissive or opt-out locations (Ohio, Mumbai)

30ur A&T classification relies on domain-level blocklist matching, which
may over- or under-count tracking in some cases; see for details.
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Fig. 3: Comparison between the prevalence of websites dis-
playing a banner (inner circle) and their contribution to total
A&T traffic (outer circle). Red M denotes sites with a banner,
and blue M denotes sites without.

show significantly fewer banners, with Singapore and Canada
(Quebec) falling in between. This pattern suggests websites
selectively deploy consent interfaces based on visitor location.
Critically, in EU, bannered sites contribute the majority of
observed tracking, indicating these sites are responsible for
most tracking activity. In non-EU regions, bannered sites
contribute a smaller share and more tracking originates from
sites without banners. This suggests consent mechanisms act
as gatekeepers for high-intensity tracking deployments, partic-
ularly in jurisdictions where consent is legally required.
Effect of consent by region. We next compare exposure in the
“no-click” and “accept-all” states for each location (Fig. 4). In
GDPR-regulated vantages (FR, DE, IE), baseline tracking in
the “no-click” state is low: mean A&T counts are significantly
smaller than in OH or IN when visiting the same sites with-
out consent. Once users accept all cookies, third-party A&T
exposure in EU locations increases sharply: FR jumps from
9.3 to 33.9 domains (265% increase). In contrast, Ohio shows
a modest increase from 48.5 to 56.2 domains (16% increase)
because many trackers load even without explicit consent. This
pattern extends to sites without detectable banners: in non-
EU regions, these sites contribute substantially higher tracking
(37-58 domains) than in EU regions (8—10 domains), further
demonstrating how consent requirements shape tracking expo-
sure across the web ecosystem. These results demonstrate that
GDPR-style consent requirements provide a stronger privacy
baseline until users click “Accept”, at which point much of that
advantage erodes. Tracking exposure is also highly skewed:
the top 50% of sites contribute 97% of all observed A&T
domains across all locations (see [§H for detailed distribution
and category analysis).

C. Cross-border Data Flows

Privacy regulations such as GDPR govern not only what
data may be collected, but also where that data may be sent.
For example, GDPR restricts transfers of personal data outside
the European Economic Area (EEA) unless the destination
country provides an “adequate level of protection” or appro-
priate safeguards are in place [36]. Having examined how
browser, user location, and hosting jurisdiction affect A&T
volumes and cascades, we now ask a complementary question:

60 I 1 Before I 1 After IENo banner

Domains

Fig. 4: Average third-party A&T domains before/after accept-
ing cookie banners, and from sites with no banner, for Chrome.

where do third-party A&T requests go on the network, and
how often does A&T traffic leave a user’s regulatory region?
IP geolocation. Determining server locations is challenging
due to Content Delivery Networks (CDNs), anycast rout-
ing, and geographically distributed infrastructure. To obtain
robust location estimates, we resolve each third-party apex
domain using multiple popular recursive resolvers: Cloudflare
(1.1.1.1), Google (8.8.8.8), Quad9 (9.9.9.9), and the default
AWS resolver available within our measurement VMs so that
we can harvest as many distinct IP addresses as possible
for each domain. Using a diverse set of resolvers allows us
to capture location-dependent DNS responses and improves
coverage. Since IP-geolocation can be inaccurate for various
reasons [39]], we geolocate each resolved IP address us-
ing an ensemble of seven GeolP databases and apply majority
voting to select the most likely country for each IP. This en-
semble approach avoids over-reliance on a single database and
reduces the impact of individual misclassifications. Anycast
prefixes [40] are filtered where possible to avoid ambiguous
locations. For each (vantage point, domain) pair, we compare
the geolocated server country to the user’s regulatory region
(e.g., EEA versus non-EEA, or the user’s own country for non-
EU vantages). If any resolver returns an IP outside the user’s
region, we classify that request as leaving the region. For EU
vantages, we treat the entire EEA as a single regulatory region.
Regional containment of tracking traffic. shows
that, from every vantage point, third-party A&T requests fan
out to a large number of destination countries (45-48 unique
countries). However, the fraction of requests that remain
within the user’s regulatory region varies markedly across
locations. EU vantages exhibit substantially higher regional
containment: France and Germany keep 56% of requests
within the EEA, while Ireland retains 41%. In contrast, non-
EU vantages show more varied patterns: US vantages retain
the highest domestic containment (69-72%), while India and
Singapore show moderate containment (26-31%), and Canada
shows the lowest (6.5%). In other words, US users see most
tracking processed domestically, EU users see strong regional
containment within the EEA, while users in other non-EU
regions are considerably more likely to have their data routed
to diverse foreign jurisdictions.

To relate this to GDPR’s cross-border transfer rules, we fur-
ther examine whether EU-origin requests are sent to countries
that the European Commission has designated as providing
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Fig. 5: Cross-border data flows showing first-party (left) and A&T (right) server locations based on IP geo-location.

TABLE I: Regional containment of third-party A&T requests
by vantage point. For FR, DE, and IE, we treat the EEA as a
single region, and for OH and CA, the US as a single region.
The adequacy column is based on the EU Commission’s
Adequacy Decision [36].

Vantage point Unique dest.  Requests in the Including Adequacy

countries same region (%) regions (%)
Canada 45 6.5% -
France 48 55% 89%
Germany 47 56% 91%
India 47 26% -
ITreland 48 41% 90%
Singapore 47 31% -
USA-California 46 69% -
USA-Ohio 47 72% -

“adequate protection” under Article 45. When we count re-
quests that stay within the EEA or go to adequacy countries
(SE), the share of EU requests sent to legally “adequate”
destinations increases substantially. This fraction rises to ap-
proximately 89% for FR and IE, and 91% for DE. While
our GeolP-based analysis cannot prove legal compliance, it is
evident that A&T infrastructure for EU users is preferentially
located in jurisdictions that GDPR recognizes as offering
comparable protection. By contrast, traffic from other regions
flows more freely to a broader set of destinations, including
countries without comprehensive privacy regulations.

First-party vs third-party geographic distribution. To bet-
ter understand these regional patterns, we examine how the
geographic locations of first-party website servers differ from
those of the third-party A&T requests they trigger. [Fig. Sa
and visualize these cross-border data flows for Ohio
and France (additional vantage points in [§H). Each flow in
the Sankey diagram represents the prevalence of a specific
cross-border pattern: the flow thickness indicates how many
websites in our dataset exhibit that particular combination
of first-party server (primary server IP) location and A&T
destination region, with each website contributing at most
once per unique flow regardless of its tracking volume. When

multiple DNS resolvers return different geographic locations
for the same domain, we include all resolved locations, as we
cannot definitively determine which location the domain actu-
ally serves from. This prevalence-based view reveals structural
patterns in how websites route data across jurisdictions. Ohio
and France exhibit comparable behavior: first-party servers are
concentrated in the EU and US, and most A&T flows terminate
in these regions. This dominance of the US alongside local
infrastructure persists across all vantage points (see [§H).

D. Hosting Jurisdiction

A site hosting location is beyond user control but may influ-
ence legal obligations and operational choices. We assign host-
ing jurisdiction using primary server IP geolocation, restricting
analysis to sites with consistent IP-to-country mappings across
vantages, after filtering CDNs and anycast [40]. shows
cookie banner prevalence vs. A&T contribution by hosting
jurisdiction, aggregated by EU (blue) or non-EU (red) user
location (detailed breakdowns in [§I). We identify four patterns:

A/ Non-EU baseline: Non-EU users accessing sites hosted out-
side CN/EU see infrequent banners with low A&T contribution
from bannered sites, reflecting permissive environments where
consent is optional.

B/ EU adaptation: Regardless of hosting jurisdiction, sites
present banners frequently to EU users (61-64% for US-
hosted sites) with bannered sites contributing 81-83% of A&T,
demonstrating location-based tailoring for GDPR compliance.
C/ EU-hosted baseline: EU-hosted sites display banners at
moderate rates (42-44%) even to non-EU users, suggesting
GDPR-compliant sites deploy consent mechanisms uniformly.
D/ CN hosts: CN-hosted sites show uniform 19% banner
prevalence regardless of user location, consistent with China’s
PIPL [41] mandating GDPR-like consent applied globally.
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V. DISCUSSION

Our results show browser choice, browsing location and
its regulatory framework, and hosting jurisdiction each affect
different aspects of the A&T ecosystem: baseline volume,
cookie-consent behavior, cascade structure, and cross-border
data flows. We discuss practical implications and limitations.

A. Implications

Privacy-focused browsers reduce A&T exposure by 30%
in permissive regions but offer smaller gains where GDPR
already lowers baseline A&T. Accepting cookies erodes this
advantage: in FR, A&T domains per site increase 3x after con-
sent vs. smaller increases in OH. GDPR-regulated locations
exhibit 80% fewer A&T domains pre-consent and keep 90%
of requests within EEA/adequacy countries, suggesting opt-in
consent and cross-border rules meaningfully reduce tracking
and contain data flows. However, dark patterns steering users
toward “Accept all” can undo much of this benefit. Location-
based consent discrimination is widespread and easily mea-
surable: websites present banners 2-3x more frequently to EU
visitors, patterns amenable to regulatory scrutiny.

B. Limitations

As with any empirical study, our work involves trade-
offs limiting generalizability. We focus on 1,005 popular
websites and 8 vantages in North America, Europe, and
Asia, potentially missing smaller or localized sites and some
countries within each region. Our A&T blocklists (e.g., Ea-
syList/EasyPrivacy [32| 33]]) are designed for URL-level ad
blocking; applying them at the domain level may over-count
(flagging benign requests to listed domains) or under-count
(missing path-specific first-party tracking rules). We mitigate
this using Wally3K’s curated lists [42, 43], which filter entries
unsuitable for domain-level matching, though some error may
remain. This also explains why A&T domains appear in Brave

crawls: Brave blocks specific URL patterns, while our classifi-
cation flags any request to a listed domain. Crucially, compar-
ative analysis across browsers and regions remains valid as the
methodology is applied uniformly. Our lexicon-driven cookie-
banner detection has high but imperfect coverage, and we
model only two consent states; we measure tracking behavior
rather than legal compliance. Our network-level observations
may miss CNAME cloaking [44] and do not account for data
volume or sensitivity; GeolP-based cross-border analysis may
contain errors from CDNs and anycast. Our factorial design
observes associations rather than proving causal effects; site
mix, business models, and regional ad markets may contribute.
Finally, our setup cost $1K+ USD, generated 1.5 TB data, and
required 2.5 weeks, limiting temporal repetition and additional
dimensions (e.g., mobile browsers).

VI. RELATED WORK

We focus on recent work that evaluates tracking under
regulatory constraints, incorporates geographic scope, or fore-
grounds measurement methodology.

Studies operationalize GDPR/CCPA requirements through
measurements of user-facing behavior: Sgrensen et al. [45]]
quantify third-party presence before/after GDPR; Sanchez-
Rola et al. [46] examine tracking persistence after opt-out;
Liu et al. [47] audit consent choices across GDPR/CCPA
contexts; Hausladen et al. [48] evaluate GPC signal compli-
ance. lordanou et al. [20] characterize cross-border tracking
endpoints for EU users; Vallina et al. [49] study tracking
across multiple vantages; Singh et al. [50] broaden coverage
to 23 Global South countries. Urban et al. [1]] measure third-
party dynamics beyond landing pages; Stafeev et al. [S1]
systematize crawling design space; Hantke et al. [52]] propose
reproducible measurement tooling. RegTrack builds on these
insights by jointly varying browser, user location, hosting
jurisdiction, and consent state within a controlled factorial
design. A chronological summary table of related work in
comparison to RegTrack is in Appendix [§K}

VII. CONCLUSION

We examined how third-party A&T exposure varies across
browser, location, and hosting jurisdiction through synchro-
nized, consent-aware measurements of 743 sites across 8
vantage points, 4 browsers, and 2 consent states. Browsing
location is the strongest predictor, influencing pre-consent
baselines, consent interface prevalence, and post-consent A&T
levels. Browser choice provides context-dependent leverage,
with larger gains in permissive settings. Hosting jurisdiction
is weaker, suggesting sites adapt to inferred user location
rather than hosting location. EU vantages show higher regional
containment of A&T traffic, especially to EEA and adequacy
destinations. Our results show user-controllable choices matter,
but structural context, location-conditioned consent gating
and region-specific infrastructure—often dominates, providing
measurable compliance signals for regulators and emphasizing
the need to treat browser, location, and consent state as first-
class experimental variables.
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APPENDIX
A. Data and Code Availability

To support reproducibility and future research, we publicly
release our dataset (raw HAR files, processed tracking-domain
classifications, and aggregated statistics) and the RegTrack
source code, analysis pipelines, and visualization scripts at
https://github.com/ubc-spg/RegTrack.

B. Use of Generative Al

We used generative Al tools (ChatGPT, Claude) to assist
with specific technical and editorial tasks during this research,
and we document their use here for transparency. For writing,
we relied on these tools to improve sentence clarity, correct
grammatical errors, rephrase awkward constructions to en-
hance readability, and help maintain consistent terminology
throughout the paper. For code, we used them to generate
matplotlib plotting routines for data visualizations and to
draft wrapper functions for data processing pipelines. All Al-
generated code and text were reviewed, validated, and, where
necessary, modified by the authors to ensure accuracy and
appropriateness. Finally, we used Al tools to automatically
classify invalid pages, with more details provided in the next

subsection (§C).
C. Finding Invalid Pages using Llama4

We use vision-language models (VLMs) to automatically
identify invalid pages in our crawl data. Invalid pages include
CAPTCHA:s, error pages, security warnings, and connection
failures that would skew our tracking measurements. To select
the best model, we evaluated five VLMs against 400 manually
labeled screenshots (Table II). Llama4 achieves the highest
accuracy (99%) and Cohen’s « (0.94), indicating near-perfect
agreement with human labels. shows the prompt used
to classify each captured page. We exclude websites whose
landing page is classified as invalid (result = 1) in more than
50% of visits in any browser-location configuration, ensuring
that our tracking measurements reflect actual website behavior
rather than error states.

TABLE II: Performance of vision-language models for web-
page screenshot classification (success vs. failure).

Model Acc. Prec. Rec. F1 Kappa
llama4 099 098 093 095 0.94
Qwen2.5 VL 098 095 093 094 0.93
llama3.2-vision = 0.91 092 052 0.67 0.62
LLaVA 7B 0.91 076  0.63 0.69 0.63
Gemma3 032 019 097 032 0.06

Does this webpage show ANY of these invalid
page indicators:

— CAPTCHA verification or
checkbox

— "Please verify you are human" messages

- Security warnings or "Potential Security
Risk"

— Connection errors like "This site can’t be
reached" or "can’t reach this page"

— DNS errors or technical error codes

- 404/403/500 error messages or "Not Found"

— Generic error messages like "Something went
wrong" or "We’re having trouble"

— "Unable to connect" or connection timeout
messages

- Blank or mostly empty pages with minimal
content

- Browser error pages or access restrictions

— "Access Denied" or permission error messages

- Security warnings like "This site has been
reported as unsafe"

— Technical service pages showing raw data or

"I'm not a robot"

configuration

- Completely blank white/empty pages with no
content

- Microsoft Defender or browser security
warnings

Answer in JSON format:

{

"result": 1 or 0 (1 for YES, 0 for NO),
"reason": "brief explanation in 30 words or
less™"

Fig. 7: LLM prompt for invalid page detection.

D. Blocklists Used for A&T Classification

[Table III| lists the blocklists used to classify third-party
domains as advertising and tracking (A&T) as well as their
descriptions.

TABLE III: Blocklists used for A&T identification.

Blocklist Description

AdGuard DNS [34]
StevenBlack [53]
LanikSJ Admiral [54]
Anudeep AdServers [S5]
EasyList Default [32]

Default blocklist for AdGuard DNS service
Default blocklist for Pi-hole ad blocking
Blocks ad-blocker detectors like Admiral

Ad server list by AnudeepND (via NextDNS)

Primary ad blocking list for AdBlock, AdGuard,
uBlock Origin

EasyList Privacy [33]
Firebog Prigent [56]
Frogeye [57]

Tracker blocking companion to EasyList
Ad list by Fabrice Prigent
Tracker list by Geoffrey Frogeye
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Fig. 8: CDF of 3rd-party A&T domains across website per-
centiles (5-point increments) by location. X=100 represents the
95th-100th percentile. The steep right-to-left decline demon-
strates that A&T is concentrated in higher percentile websites.

E. GDPR Adequacy Destinations

Under GDPR Article 45, the European Commission has
issued adequacy decisions [36] for the following countries and
territories, allowing personal data to flow from the EU to them
without additional safeguards: Andorra, Argentina, Canada
(commercial organizations), the Faroe Islands, Guernsey, Is-
rael, the Isle of Man, Japan, Jersey, New Zealand, the Republic
of Korea, Switzerland, the United Kingdom, Uruguay, and the
United States of America (under the EU-U.S. Data Privacy
Framework).

In our server-IP analysis (§IV-C), we therefore treat data
transfers to these jurisdictions as compliant with the GDPR’s
cross-border transfer restrictions.

F. Tracking Distribution and Category Analysis

Skewed distribution of tracking across sites. Tracking
exposure is highly skewed across sites: most sites contact
relatively few third-party A&T domains, while a small fraction
contact dozens or even hundreds. [Fig. §|illustrates this concen-
tration by showing the distribution of third-party A&T domains
across website percentiles. The top 50% of sites contribute
roughly 97% of all observed third-party A&T apex domains
in our Chrome accept-all configuration. This pattern holds
consistently across all vantage points.
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Fig. 9: Category prevalence vs. A&T contribution in US-
Ohio using Chrome. Categories above the diagonal contribute
disproportionately to A&T.

Which sites track the most? To understand which website
types contribute more to A&T, we group sites by category.
shows, for Ohio with Chrome, the relationship between
each category’s prevalence in our dataset and its contribution
to total A&T requests. Categories above the diagonal con-
tribute disproportionately high tracking: Entertainment (10%
of sites, 28% of A&T), News & Media (5% of sites, 19% of
A&T), and Video Streaming (3% of sites, 10% of A&T).

G. Measurement Infrastructure

Our measurement infrastructure consists of distributed
crawling nodes and a centralized orchestration layer.
Regional Crawling Nodes. We deploy AWS EC2 instances
in eight geographic regions to perform web crawls:

o North America: Ohio (us-east-2), California (us-west-1),

Canada (ca-central-1)

o Europe: Ireland (eu-west-1),

France (eu-west-3)

o Asia: Singapore (ap-southeast-1), India (ap-south-1)

Germany (eu-central-1),

All crawling nodes use the same instance type to ensure

measurement consistency with the following specifications:

« Instance type: mb6a.32xlarge

« CPU: 128 vCPUs

« Memory: 512 GB RAM

o Network: 50 Gbps

o Disk: 300 GB gp3 SSD with 20k IOPS and 1 GB/s
bandwidth

e OS: Ubuntu 22.04 LTS

Each node runs Browsertime to automate browser interac-
tions and collect HAR files that record all network requests.
Central Orchestration Server. We use a Dell PowerEdge
R750 server to coordinate crawls across all regions and process
the collected data:

« Model: Dell PowerEdge R750
o CPU: 64 cores (2x Intel Xeon Gold 6326 @ 2.90 GHz)
e Memory: 1024 GB RAM

This server schedules crawls, monitors progress across
regions, collects HAR files from the crawling nodes, and
performs initial aggregation and full analysis.

Invalid Page Classification Server. We use a GPU-equipped
Dell PowerEdge R750 server for Llama4-based invalid-page
classification:

o Model: Dell PowerEdge R750

o CPU: 64 cores (2x Intel Xeon Gold 6326 @ 2.90 GHz)

e Memory: 1024 GB RAM

« GPU: NVIDIA A100 PCle 80 GB

H. Additional Cross-Border Data Flow Diagrams

in the main text shows cross-border data flows for
Ohio and France. Here we present the corresponding diagrams

for the remaining vantage points
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L. Detailed Host Location Statistics

Table 1V| and [Table V| show respectively the prevalence of
cookie banners and A&T contribution across host locations
and vantage points.

TABLE IV: Share of sites (in %) that display a cookie banner,
broken down by hosting jurisdiction (rows) and user vantage
point (columns). EU vantages are grouped on the left, non-EU
vantages on the right.

EU vantages Non-EU vantages

Host FR DE IE OH CA CAD IN SG
US(118) | 61% 64% 63% | 27% 31% 40% 33% 33%
EU(55) 62% 60% 60% | 42% 44%  44% 42% 42%
SG(©9) 33% 33% 33% | 11% 11% 11% 11% 11%
IN(4) 50% 50% 50% | 25% 25% @ 25% @ 25% 25%
CA(2) 50% 50% 50% | 0% 0% 0% 0% 0%
RU(@33) 39% 39% 36% | 30% 30% 24% 18% 24%
CN(16) 19% 19% 19% | 19% 19% 19% 19% 19%

TABLE V: AT contribution % from sites that present cookie
banner in different regions

stabilizes overlap estimates; we observed qualitatively similar
regional clustering when using other top-X% thresholds. We
observe substantial overlap overall, suggesting a stable core
of tracking-intensive sites that appear near the top of the
ranking in many regions, but also clear regional clustering
among the very heaviest contributors. Our analysis shows
that EU vantage points (FR, DE, IE) have a similarity of
0.9-0.92 among each other, while India and Singapore show
0.82 similarity with each other, which is higher than either
EU or North America. From North American vantage points,
similarity is higher within North America than across regions;
Asia also shows strong internal similarity. This pattern is
consistent with a picture in which a common global set of
large sites dominates tracking, but their relative intensity and
ranking vary by region, indicating location-aware advertising
and analytics deployments.

TABLE VI: Jaccard similarity of top 10% websites contribut-
ing to third-party A&T across locations. High similarity within
regional groups (NA, EU, Asia) indicates regional clustering
of high-tracking websites.

EU vantages Non-EU vantages North America Asia EU

Host FR DE IE OH CA CAD IN SG CAD OH CA IN SG FR DE 1IE

Us(118) | 81% 83% 82% 10%  17% 33% 18%  18% CAD 1.00 080 074 | 074 078 | 059 059 0.59

EUGS) | 97% 97% 96% | 55% 58% 59% 57%  56% OH 080 1.00 080 | 0.74 076 | 057 057 0.56

SG(9) 90% 90% 88% | 1% 1% 1% 2% 1% CA 074 080 1.00 | 0.80 0.80 | 0.68 0.70 0.66
IN4) 81% 82% 81% 6% 6% 5% 7% 9%

CA(2) 80% 80% 82% 0% 0% 0% 0% 0% IN 0.74 0.74  0.80 1.00 0.87 | 0.70 0.66 0.68

RU(33) 69% 69% 64% | 35% 37% 33% 30% 34% SG 0.78 0.76  0.80 | 0.87 1.00 | 0.74 0.72 0.72

CNa6) EPNIERi 0% |TGHRENTI% 89% L FR 0.59 0.57 068 | 0.70 0.74 1.00 090 0.92

DE 0.59 057 070 | 0.66 0.72 | 0.90 1.00 0.90

J. Concentration and Regional Clustering of Heavy Trackers 1B 0.5 056 0.66 | 068 0.72 | 092 050 1.00

We can also view this skewness from the perspective of
who contributes most of the A&T volume. Given this heavy
concentration, we next ask whether the same sites dominate
everywhere or whether the identity of heavy trackers changes
by region. For each location, we take the top 10% of sites
by A&T contribution and measure the overlap between these
sets across locations and show it in [Table VII We focus on the
top 10% because this subset captures the heaviest contributors
while still leaving at least dozens of sites per location, which

K. Chronological Summary of Related Work

Table summarizes closely related studies along common
study-design axes. For each work, we report its primary
objective, the number of browsers (or measurement client con-
figurations), the browsing/measurement locations from which
measurements were conducted (i.e., vantage points), and the
reported scale in number of sites (or the closest equivalent
when the study uses a different primary unit).
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TABLE VII: Regulatory and measurement-focused related work summarized along study-design axes. “Geographic scope”
refers to browsing/measurement locations (vantage points) used to collect data. “# Sites” is reported as the number of sites (or

the closest equivalent when the study uses observational user data).

Prior study Year Focus/Objective Browsers Geographic scope # Sites
Iordanou 2018 Cross-border tracking endpoints for EU 1 Observational users (multi- 5,693
et al. [20] users by mapping where third-party track- (Chrome) country; EU28 subset
ing communications terminate (destination analyzed; not controlled
infrastructure). vantages).
Sgrensen 2019 Third-party presence before vs. after 1 Single EU-based browsing lo- 1,250
et al. [43] GDPR enforcement using longitudinal (Firefox) cation (crawling VM in EU;
crawling to quantify changes in third-party not location-varied).
inclusion over time.
Sanchez-Rola 2019 Tracking persistence after opt-out attempts: 1 3 browsing locations (Spain; 2,000
et al. [46] contrasts  user-facing  opt-out/consent (Chrome) France; Ireland).
choices with observed cookies and
tracking activity.
Vallina 2019 Privacy practices and tracking in the adult- 2 Spain (physical) + VPN van- 6,843
et al. [49] web ecosystem under GDPR, including (Firefox tages in other EU member
measurement of tracking technologies and and states + SG/IN/RU/US/UK.
compliance signals. Chrome)
Urban 2020 Third-party dynamics “in the field”: mea- 1 3 browsing locations 10,000
et al. [L] sures how third parties appear beyond land- (Europe/DE; North
ing pages and characterizes embedding pat- America/US; Asia/JP).
terns at scale.
Liu 2024 Consent/CMP auditing under GDPR 1 2 browsing locations (EU- 352
et al. [47] vs. CCPA contexts: tests whether (Firefox) /Frankfurt; US/Northern Cali-
opt-out/consent choices propagate to fornia).
downstream advertising behavior.
Stafeev 2024 Crawling methodology and measurement 1 Not location-focused (no ex- 2,000
et al. [51] design space (SoK): evaluates how crawler plicit browsing-location varia-
strategy affects coverage and conclusions tion emphasized).
in web measurements.
Hantke 2025 Web measurement accuracy and repro- 1 Not location-focused (tooling 10,000
et al. [52] ducibility: proposes recording/archiving contribution; browsing location
and replay to support reproducible web not a primary axis).
archive construction and measurement fi-
delity.
Hausladen 2025 CCPA/GPC opt-out compliance at scale 1 Single browsing location (Cal- 11,708
et al. [48] and over time: evaluates whether sites (Firefox) ifornia via VPN; not location-
honor Global Privacy Control signals in varied).
practice.
Singh 2025 Tracker exposure and related data flows 1 23 browsing locations ~100
et al. [50] in under-measured regions (Global South) (Chrome) (countries) across per
using distributed, volunteer-based measure- Africa/Asia/Europe/N. country
ments across many countries. America/Oceania/S. America.
RegTrack 2025 Cross-jurisdictional tracking under browser 4 8 browsing locations 743
choice, user location, hosting jurisdiction, (NA/EU/Asia).

and consent state within a controlled fac-
torial measurement design.
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