
Building a provenance-based
intrusion detection system
Thomas Pasquier
University of Bristol

Talk loosely based on following
publications
▪ Han et al. “UNICORN: Revisiting Host-Based Intrusion Detection in

the Age of Data Provenance”, NDSS 2020
▪ Pasquier et al. “Runtime Analysis of Whole-System Provenance”,

ACM CCS 2018
▪ Han et al. “Provenance-based Intrusion Detection: Opportunities and

Challenges”, USENIX TaPP 2018
▪ Pasquier et al. “Practical Whole-System Provenance Capture”, ACM

SoCC 2017

Partners

Institutions (core)
▪ University of Cambridge (UK)
▪ Harvard University (US)
▪ University of British Columbia (Canada)

Funding
▪ EPSRC
▪ NSF
▪ DARPA
▪ Microsoft Cloud Computing Research Centre

3

System call based intrusion detection

4

System Calls

System call based intrusion detection

Identify abnormal patterns

5

System Calls

System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions

6

System Calls

System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as bening action

7

System Calls

System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as bening action

Over a long period of time

[...]

[...]

8

System Calls

Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships
between events

9

Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships
between events

10

Provenance-based intrusion detection

▪ Related system states are connected even across long period of
time

11

What is provenance in an operating system?

- Represent interactions between system objects
- Represented as a directed acyclic graph
- Information Flows
- Relationship between kernel object states
- History of a system execution

12

Example provenance

13

1. Capture
2. Processing
3. Detection

Provenance Capture

15

Provenance Capture Problem

▪ Muniswamy-Reddy et al. (USENIX ATC 2006)
▪ PASS

– Untrustworthy
– Hard to maintain
– Project abandoned

16

Interposition is unsafe

▪ Watson WOOT 2007
▪ Time-of-audit-to-time-of-use attack

– Race condition
▪ Syntactic Race

– different copy of parameters
▪ Semantic Race

– Kernel state may change

17

Provenance Capture Problem

▪ Gehani et al. ACM/IFIP/USENIX MW 2012
▪ SPADE

– Easy to maintain
– … did not quite work

➢ Trustworthy, but
➢ Not accurate

18

Provenance Capture Problem

▪ Gehani et al. ACM/IFIP/USENIX MW 2012
▪ SPADE

– Easy to maintain
– … did not quite work

➢ Trustworthy, but
➢ Not accurate

▪ Missing kernel state
▪ Hard to infer

causality

19

Provenance Capture Problem

▪ Gehani et al. unpublished
▪ SPADE v3

– Back to square one
– Same vulnerability
– Hard to maintain

20

Fix: CamFlow

▪ Pasquier et al. IEEE TCC 2015 and ACM SoCC 2017
– Rely on reference

Monitor
– Trustworthy
– Easy to maintain

small extension of the
LSM framework.

21

Fix: CamFlow

▪ Pasquier et al. IEEE TCC 2015 and ACM SoCC 2017
– Rely on reference

Monitor
– Trustworthy
– Easy to maintain

small extension of the
LSM framework.

2015-present
4.2.x to 4.20.x
camflow.org

22

Processing provenance

Provenance in science

24

Provenance-based security

▪ Provenance-based access control
– A provenance-based access control model, IEEE PST 2012

▪ Loss Prevention Scheme
– *Trustworthy Whole-System Provenance for the Linux Kernel, USENIX Security 2015

▪ Intrusion Detection
– FRAPpuccino: fault-detection through runtime analysis of provenance, USENIX HotCloud 2017

▪Moving towards complex runtime graph analysis

25

Provenance-based security

▪ Provenance-based access control
– A provenance-based access control model, IEEE PST 2012

▪ Loss Prevention Scheme
– *Trustworthy Whole-System Provenance for the Linux Kernel, USENIX Security 2015

▪ Intrusion Detection
– FRAPpuccino: fault-detection through runtime analysis of provenance, USENIX HotCloud 2017

▪ Moving towards complex runtime graph analysis
▪ *overhead is a function of total graph size, a graph which grows

indefinitely
– 21ms overhead per network packet, on small graphs

26

Policy evaluation problem

▪ Bates et al. USENIX Security 2015
– Loss prevention scheme
– Architecture not designed for enforcement
– Very high latency

▪ Reduce graph size?
– Pasquier et al.

IEEE IC2E 2016
– Bates et al.

ACM TOIT 2017
▪ Does not quite save

the problem

27

Fix

▪ Pasquier et al. to CCS 2018
– Introduce separation of

Concerns.
– Can make separate trade

offs
– Programmable loadable

kernel provenance-based
policy module

28

Intrusion Detection

29

Intrusion Detection

30

Work in progress, preliminary results

Provenance-based Intrusion Detection
- Flat logs are hard to analyse

- Han et al. USENIX TAPP 2018
- Principle first introduced in Han et al. USENIX HotCloud 2017

- First paper on the topic!
- We target cloud application

- Relatively well defined behaviour
- Build a model of system behaviour

- in a controlled environment
- from a representative workload

- Detect deviation from the model
- Several approaches being explored…

31

Detecting intrusion

32

How well does it work?

33

How well does it work?

34

Some insights

▪ We can detect intrusion out of graph structure with little metadata
– Vertex type (thread, file, socket etc…)
– Edge type (read, write, connect etc…)

▪ Processing speed
– Current prototype
– Data generation speed < processing speed!

35

Future direction

Research Trajectory 1/2

- Doing proper evaluation is hard!
- Dataset are hard to generate

- What is a good quality dataset?
- Hard to compare across papers, a lot is not available

- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines

- Leads to unsatisfactory evaluation
- I may be able to compare to similar techniques (may reuse dataset)
- … very hard for unrelated one

37

Research Trajectory 2/2

- Extending to distributed systems and IoT
- An auditable IoT environment?
- EPSRC DataBox project (verifiable ledger)

- Solving the many provenance challenges
- Storage (Database)
- Trust (Crypto/Hardware)
- Representation (HCI)

38

Thank you,
questions?
tfjmp.org
camflow.org

