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Provenance-based intrusion detection

Intuition: provenance graph exposes causality relationships
between events
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Provenance-based intrusion detection

Intuition: provenance graph exposes causality relationships
between events
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Provenance-based intrusion detection

Related system states are connected even across long period of
time
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What is provenance in an operating system?

Represent interactions between system objects
Represented as a directed acyclic graph
Information Flows

Relationship between kernel object states
History of a system execution
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Provenance-based Intrusion Detection

- We target environment with minimal human intervention
- Relatively well defined behaviour
- In particular CI/CD pipeline

Build a model of system behaviour (unsupervised, batch training)
- in a controlled environment

- from a representative workload
Detect deviation from the model
Several approaches being explored...
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Detecting intrusion (an example)
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Detecting intrusion (an example)
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1) Graph streamed in, converted to histogram, labelled using struct2vec
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Detecting intrusion (an example)
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2) At regular interval, histogram converted to a fixed size vector using
locality-sensitive hashing
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Detecting intrusion (an example)
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3) Feature vectors are clustered
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Detecting intrusion (an example)
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4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model
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Do provenance-based IDS work?

Experiment | Precision  Recall ~ Accuracy  F-Score
StreamSpot (baseline) 0.74 N/A 0.66 N/A
R=1 0.51 1.0 0.60 0.68
R=3 0.98 0.93 0.96 0.94

TABLE II: Comparison to StreamSpot on the StreamSpot dataset. We estimate
StreamSpot’s average accuracy and precision from the figure included in the
paper [85], which does not report exact values. They did not report recall or
F-score.
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Experiment | Precision  Recall  Accuracy  F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE V: Experimental results of the DARPA datasets.



How do we build datasets?

Experiment | Precision  Recall ~ Accuracy  F-Score . .

SeeamSpot (basehine) 07a 0,66 N/A Experiment | Precision  Recall  Accuracy F-Score

R=1 0.51 0.60 0.68 DARPA CADETS 0.98 1.0 0.99 0.99
TA%E ;1]'1 SN 0-958 -0 I 2-(916t . 0-9:? t DARPA ClearScope 0.98 1.0 0.98 0.99

: Comparison to StreamSpot on the StreamSpot dataset. We estimate

StreamSpot’s average accuracy and precision from the figure included in the DARPA THEIA : 1.0 10 1.0 1.0
paper [85], which does not report exact values. They did not report recall or TABLE V: Experimental results of the DARPA datasets.
F-score.
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Experiment | Precision  Recall ~ Accuracy  F-Score

SC-1 0.85 0.96 0.90 0.90

SC-2 0.75 0.80 0.77 0.78

TABLE VII: Experimental results of the supply-chain APT attack scenarios.

Attack looks like “normal workload”



How do we evaluate provenance-based

IDS?

We never got the algorithm to work with SPADE (auditd) data

Experiment | Precision  Recall ~ Accuracy  F-Score
StreamSpot (baseline) 0.74 0.66 N/A
R=1 0.51 0.60 0.68
R=3 0.98 0.96 0.94

TABLE II: Comparison to StreamSpot on the StreamSpot dataset. We estimate
StreamSpot’s average accuracy and precision from the figure included in the
paper [85], which does not report exact values. They did not report recall or

F-score.
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Experiment | Precision  Recall  Accuracy  F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE V: Experimental results of the DARPA datasets.

Experiment | Precision  Recall ~ Accuracy  F-Score
SC-1 0.85 0.96 0.90 0.90
SC-2 0.75 0.80 0.77 0.78

TABLE VII: Experimental results of the supply-chain APT attack scenarios.



What is provenance in an operating system?

Represent interactions between system objects

Represented as a directed acyclic graph
- ... or not?

Information Flows

Relationship between kernel object states
- ... ornot?

History of a system execution
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What is provenance in an operating system?

Multiple capture levels
Share similar syntax...
... but different semantic
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Performance?

Can we analyse provenance at runtime?

Pasquier et al., Runtime Analysis of Whole-System Provenance,

CCS 2018

Expect previous properties
Previous algorithm is practical
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Graph Size (# of Edges)

Fig. 4: Total number of processed edges over time (in seconds) in the
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Can we analyse provenance at runtime?

- Performance?
— Pasquier et al., Runtime Analysis of Whole-System Provenance,
CCS 2018 B
— Expect previous properties ;0 i |
— Previous algorithm is practical
— ... only with CamFlow
— ... cycle are problematic
— ... ordering properties
— ... and more! . 7 g
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Can we be sure that capture is
accurate and complete?

Chan et al., ProvMark: A Provenance Expressiveness
Benchmarking System, Middleware 2019

— Dynamic provenance benchmark
— Compared 3 systems (CamFlow, SPADE (auditd), OPUS)

Pasquier et al., Runtime Analysis of Whole-System

Provenance, CCS 2018

— Static analysis of Linux Kernel
— Generated model for CamFlow
— Manual verification
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Can we be sure that capture is
accurate and complete?

Chan et al., ProvMark: A Provenance Expressiveness

Benchmarking System, Middleware 2019
— Dynamic provenance benchmark
— Compared 3 systems (CamFIow SPADE (auditd), OPUS)
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The questions we ask ourselves

- What is provenance in an operating system?
Do provenance-based IDS work?
How do build datasets?
How do evaluate provenance-based IDS?
Can we evaluate provenance at runtime?
Can we be sure that capture is accurate and complete?
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Thank youl
Questions?

More info online: http://camflow.org
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