Building a provenance-based
Intrusion detection system

Thomas Pasquier, University of Bristol
AMSS, 08/12/2020

Talk loosely based on following publications

e Han et al. “SIGL: Securing Software Installations Through Deep Graph
Learning”, USENIX Security Symposium 2021

e Han et al. “UNICORN: Revisiting Host-Based Intrusion Detection in the Age of
Data Provenance”, NDSS 2020

e Pasquier et al. “Runtime Analysis of Whole-System Provenance”, ACM CCS
2018

e Pasquier et al. “Practical Whole-System Provenance Capture”, ACM SoCC 2017

https://[tfjmp.org

Plan: Building a provenance-based intrusion detection system

- Motivation

- What is provenance?

- How is useful?

- How to perform detection?

- How to evaluate

- Some insights from this work

Motivation

Motivation: System call based intrusion detection

System Calls

Motivation: System call based intrusion detection

System Calls

Identify abnormal patterns

| >

Motivation: System call based intrusion detection

System Calls

Identify abnormal patterns

| >

Hidden among benign actions

Motivation: System call based intrusion detection

System Calls

| |
| |
.]
| | Identify abnormal patterns
: N >
| |
| |
| |
| |

Hidden among benign actions
Masquerading as benign action

Motivation: System call based intrusion detection

System Calls

[.]

[.]

Identify abnormal patterns
| Y

Hidden among benign actions
Masquerading as benign action
Over a long period of time

What is provenance?

10

What is provenance?

- From the French “provenir’” meaning “coming from”
- Formal set of documents describing the origin of an art piece

- Sequence of .

- Formal ownership
- Custody
- Places of storage

- Used for authentication

What is data-provenance?

Represent interactions between objects of different types
Data-items (entities)
Processing (activities)
Individuals and Organisations (agents)

Represented as a directed acyclic graph (think information flows)
Edges represent interactions between objects as dependencies

It is a representation of history
Immutable (unless it's 1984)
No dependency to the future

12

Example provenance (simplified)

P1

Example provenance (simplified)

create
P1 <—(:)

Example provenance (simplified)

create
P1 <—(:)
read

Example provenance (simplified)

P1

&@

@&

P2

send e send @

16

Example provenance (simplified)

P1

create

@&

P2

send

P3

rcv

:

send

rcv

17

Example provenance (simplified)

P1

create

P2

send

write

&=

P3

rcv

:

send

rcv

18

Example provenance (simplified)

Linux kernel compilation:

~2M graph elements

create

write

&=

P1

send
P2

rcv
P3

:

send

rcv

19

How is this useful?

Provenance-based intrusion detection

- Intuition: provenance graph exposes causality relationships
between events

21

Provenance-based intrusion detection

- Intuition: provenance graph exposes causality relationships
between events

22

Provenance-based intrusion detection

Related events are connected even across long period of time

23

How to perform detection?

Assumptions (and limitations)

Runtime detection
We target environment with minimal human intervention
- relatively consistent behaviour
- e.g. web servers, Cl pipelines etc...
Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)
Detect deviation from the model

Several approaches being explored...

25

Example: UNICORN

= INEEEE - ° o0 o
o« 4o
Yee”
O...
I = DD
©, @

» Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced
Persistent Threats”, NDSS 2020

Example: UNICORN

- DEEEEE - ® oo,
¢« s0a°
Yee”
O...
| g——
©, @

1) Graph streamed in, converted to histogram, labelled using (modified)
struct2vec

27

Example: UNICORN

= [([I111] ®oo o
o s02°
Yoo~
O...
I) O
©) @

2) At regular interval, histogram converted to a fixed size vector using
similarity preserving graph sketching

28

Example: UNICORN
} |]_] =) EEEEEN O

= INEEEE - ° o0 o
o« 4o
Yee”
0...
| = DD
@

3) Feature vectors are clustered

29

Example: UNICORN
} ll_-] =3 B

= IEDEEE o0 o
e +0o°
Yoo~
O...
I) [(TTT11]
©) @

4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model

30

Relatively simple

Labelled directed acyclic graph

— node/edge types

— security context (when available)

Modification and combination of existing algorithms
— struct2vec

— similarity preserving hashing

— clustering

Right combination + domain knowledge

31

How to evaluate?

32

Evaluation with DARPA datasets

Experiment ~ Dataset # of Graphs Avg. |V| Avg. |[E| Raw Data Size (GiB)
DARPA Benign 66 59,983 4,811,836 271
CADETS Attack 8 386,548 5,160,963 38
DARPA Benign 43 2,309 4,199,309 441
ClearScope Attack 51 11,769 4,273,003 432
DARPA Benign 2 19,461 1,913,202 4
THEIA Attack 25 275,822 4,073,621 85

Experiment | Precision Recall ~ Accuracy F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

TABLE V: Experimental results of the DARPA datasets.

33

Evaluation with DARPA datasets

Experiment ~ Dataset # of Graphs Avg. |V| Avg. |[E| Raw Data Size (GiB)
DARPA Benign 66 59,983 4,811,836 271
CADETS Attack 8 386,548 5,160,963 38
DARPA Benign 43 2,309 4,199,309 441
ClearScope Attack 51 11,769 4,273,003 432
DARPA Benign 2 19,461 1,913,202 4
THEIA Attack 25 275,822 4,073,621 85

Experiment | Precision Recall ~ Accuracy F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

TABLE V: Experimental results of the DARPA datasets.

SUCH GOOD RESULTS ARE NOT NORMAL

34

Building our own dataset

Experiment Dataset # of Graphs Avg. |[V| Avg. [E| Raw Data Size (GiB)

Experiment | Precision = Recall ~ Accuracy F-Score
SC-1 Benign 125 265,424 975,226 64
Attack 25 257,156 957,968 12 SC-1 0.85 0.96 0.90 0.90
S Benign 125 238338 OI1,153 59 SC-2 0.75 0.80 0.77 0.78
g Attack 25 243,658 949,887 12 TABLE VIII: Experimental results of the supply-chain APT attack scenarios.
TABLE VI: Characteristics of the datasets used in the supply-chain APT attack
experiments.

= Attack designed to look similar to background activity

35

Building our own dataset

Experiment Dataset # of Graphs Avg. |[V| Avg. [E| Raw Data Size (GiB)

Experiment | Precision = Recall ~ Accuracy F-Score
SC-1 Benign 125 265,424 975,226 64
Attack 25 257,156 957,968 12 SC-1 0.85 0.96 0.90 0.90
S Benign 125 238338 OI1,153 59 SC-2 0.75 0.80 0.77 0.78
g Attack 25 243,658 949,887 12 TABLE VIII: Experimental results of the supply-chain APT attack scenarios.
TABLE VI: Characteristics of the datasets used in the supply-chain APT attack
experiments.

= Attack designed to look similar to background activity
= |s that enough?

36

Some insights from this work

We can build practical provenance-based IDSs

We can detect intrusion out of graph structure with little metadata
— Vertex type (thread, file, socket etc...)
— Edge type (read, write, connect etc...)
Processing speed
— Current prototype
— Data generation speed < processing speed!

38

Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?
- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines
- Leads to unsatisfactory evaluation
- | may be able to compare to similar techniques (may reuse dataset)
- ... very hard for unrelated one (i.e. ingest different data type)

- Adversarial ML?

39

Identifying threats: explainability is a problem

There is a problem within the last batch of X graph elements
— 2,000 in previous figures

Good luck finding out what went wrong

Provenance forensic is an active field of research
— Promising work out of the DARPA programme

... but could we do better during detection?

= Han et al. “SIGL: Securing Software Installations Through Deep Graph
Learning”, USENIX Security Symposium 2021
— Graph LSTM Autoencoder
Pinpoint issue in the graph, but...
...less complex problem
...smaller graphs
Can we take such approach further?

40

Looking for ...

- PhD Students
- Postdocs: job advert to come (soon) on intrusion detection at the edge
- Collaborators

Get in touch: https://tfjmp.org

41

Thank you! Questions?

tfimp.org
camflow.org

Comparison state

Experiment Dataset # of Graphs Avg. |[V| Avg. |[E| Preprocessed Data Size (GiB)
YouTube 100 8,292 113,229 0.3

Gmail 100 6,827 37,382 0.1

StreamSpot Download 100 8,831 310,814 1
VGame 100 8,637 112,958 0.4

CNN 100 8,990 294,903 09

Attack 100 8,891 28,423 0.1

TABLE I: Characteristics of the StreamSpot dataset. The dataset is publicly

available only in a preprocessed format.

of the art

Experiment | Precision = Recall =~ Accuracy F-Score
StreamSpot (baseline) 0.74 N/A 0.66 N/A
R=1 0.51 1.0 0.60 0.68
R =3 0.98 0.93 0.96 0.94

TABLE II: Comparison to StreamSpot on the StreamSpot dataset. We estimate
StreamSpot’s average accuracy and precision from the figure included in the
paper [83], which does not report exact values. They did not report recall or
F-score.

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs"

ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm

43

Runtime performance

Fig. 4: Total number of processed edges over time (in seconds) in the SC-1 experimental workload with varying batch sizes (Fig. 4(a)), sketch sizes (Fig. 4(b)),
hop counts (Fig. 4(c)), and intervals of sketch generation (Fig. 4(d)). Dashed blue line represents the speed of graph edges streamed into UNICORN for analysis.
Triangle maroon baseline has the same configurations as those used in our experiments and indicates the values of the controlled parameters (that remain
constant) in each figure.

1
o 7
/ 4 7 i
—~ 08 /
2
4]
o0
=
53]
& 0%
=]
&
8 ol
1%
= ‘amFlow
) Cam
& oal “o- Camflow Sketch = 500
i § / o— Batch = 1,000 Sketch = 1,000
7 Buch = 3000 Sketch = 2000
4/ 4 Batch = 6000 /’ +— Sketch
L] —+— Batch = 10,000 o Sketch = 10,000
(a): Batch (b): Sketch
106
1
4
~ 08| .
2
8
k=1)
=
o
@ 06 ~
I=}
&
v
= CamFlow
=3 e
T o CamFlow
o Interval = 500
——
o +— Interval = 5,500
O gp @ 40 0 P @ 10 O 98 ® 6 0 O b 48 ® 3P g 0 O ;98 ® 6 0
Time (seconds) Time (seconds)
(¢): Hop (d): Tnterval
F CPU & Memory Utilization C ion Parameter Parameter Value Max Memory Usage (MB)

R=1 3R

Runtime performance

Graph Size (# of Edges)

0.8

0.6

0.4

0.2

\

/ x CamFlow

—6- Hop =1
Hop =2

—a— Hop=3
. Hop = 4
Hop =5

0 g9

O

1%

A0 420 40 41O g00 420 460 g1© o°

Time (seconds)
(c): Hop

45

Runtime performance

Fig. 4: Total number of processed edges over time (in seconds) in the SC-1 experimental workload with varying batch sizes (Fig. 4(a)), sketch sizes (Fig. 4(b)),
hop counts (Fig. 4(c)), and intervals of sketch generation (Fig. 4(d)). Dashed blue line represents the speed of graph edges streamed into UNICORN for analysis.
Triangle maroon baseline has the same configurations as those used in our experiments and indicates the values of the controlled parameters (that remain
constant) in each figure.

1

Memory usage: ~500MB

CPU usage 15% on 1 core g
°© il e

| o Batch = 6000
0

—+— Buch = 10000

——— Sketch = 10.000

(a): Batch (b): Sketch
106
1
~ 08
2
8
k=1)
=
o
o« 08| .
I=}
&
8 o
v
= wFlow
S, e Cam
g o, i CanFlow
o Interval = 500
teral = 1,000
)% o Imeral = 3000
o e +— Interval = 5,500
O gh W 40 @ P ® 18 P g 4O O g5 40 © P ® 1O P
Time (seconds) Time (seconds)
(c): Hop (d): Tnterval
F CPU & Memory Utilization C ion Parameter _ Parameter Value Max Memory Usage (MB)

R=1 3R

CamFlow capture mechanism

- Leverage existing kernel features whenever possible
- Avoid alteration of existing code

- We therefore build upon:

- Linux Security Module
- to capture system events I Configuration | [Pl

CPL

e.g. SQL, Neo4J

Provenance-aware camflowd

- to capture network events camconid application Standard

= N et F i Ite r ; [Smrage back-end J

application
- Re I ay F S libprovenance libprovenance libprovenance
T T
TR 1
- to transfer provenance to ' ' User-space
-I security-fs I- -I xattr I- ___________________

user space T

- Secu rity FS __________ i_ _______________ Capture _’[Boot-buffer]
i

- to provide a userspace 1—|
Interface for Settlngs | LSM hooks | | NetFilter hooks

== Provenance Records

I I —— System Provenance

Kernel objects’ provenance data structure — -+ Configuration

47

Extent of modification

Modifications to the Linux Kernel code

System Headers C File Total LoC
PASS (v2.6.27) 18 69 87 5100
pub. 2006
LPM (v2.6.32) 13 61 74 2294
pub. 2015
CamFlow (v5.4.15) 3 0 3 4220

circa 2020

48

Capture overhead

Micro-benchmark

Sys Call Whole Selective
stat 100% 28%
open/close 80% 18%

fork 6% 2%

exec 3% <1%

Macro-benchmark

Prog. Whole Selective
unpack 2% <1%
build 2% 0%
postmark 11% 6%

Selective: cost of allocating/freeing provenance “blob” + recording or not decision

Whole: Selective + cost of recording provenance information

49

IDS performance (more

1.00
0.75
2
5050
0.25
0.00
1. 2 3* 4 5
Hop
WM Accuracy WM Precision EEE Recall NN F-Score
(a) Hop
1.00
0.75
3
8 0.50
0.25
0.00 T
500 1,000 3,000* 5,000
Interval Size

BN Accuracy BB Precision BN Recall WEM F-Score

(c) Interval

1.00
0.75
3
S 0.50
0.25
0.00
500 1,000 2,000%* 3,000 10,000
Sketch Size
BN Accuracy mm Precision EEE Recall W F-Score
(b) Sketch
1.00
0.75
2
8 0.50
0.25
0.00 T
0.0 0.02* 0.1 1.0
Decay Rate

BN Accuracy WEM Precision NN Recall WEM F-Score

(d) Decay

Figure 4: Detection performance (precision, recall, accuracy, and F-score) with varying hop counts (Fig. 4a), sketch sizes (Fig. 4b), intervals of
sketch generation (Fig. 4c), and decay factor (Fig. 4d). Baseline values (*) are used by the controlled parameters (that remain constant) in each

figure.

50

IDS performance (more)

100 IF
. -
Configuration Parameter Parameter Value Max Memory Usage (MB) B O T s e
80 1 ‘eeem ,_‘;-..-'m
R=1 562
R =2 624 c
H 2 604
o R=3 687 5
oun R=4 749 5
R=5 812 E 40 1
IS| = 500 312
S| = 1,000 437 20 1
Sketch IS1=1, .
= e IS| = 2,000 687 — '
e S| = 5,000 1,374 0ttt e M o T e evere mvmmenm:
IS| = 10,000 2,498 S S O S P S S P S
Table 5: Memory usage with varying hop counts and sketch sizes. Time (seconds)

« Average CPU VCPUO = VCPU1 % VvCPU2 e VCPU3 ® VCPU4 e VCPU5 & VCPUG6 v VCPUT

Figure 6: Per virtual CPU and average CPU utilization.

IDS performance (more)

CPU over long time period?

% CPU Utilization

15% CPU time across cores

100

80 -

60 -

40 -

201

o+——TTTT—TT—TTTT T T T T T T T
O LD OL RO LNDODND
O O AR AR D (L 0 A
R O S NS N A IR I R I o
Time (seconds)
Figure 5: Average CPU utilization with the baseline configurations.

52

Advanced Persistent Threats
I-> Active Scanning ™

Identify Target & Explore Vulnerabilities % Passive Scannin g

> Malware
a -

Design Backdoor & Penetration Plan » Scripting Zero-Day Exploits

-,

> Spearphishing
=

» Supply-chain Attack

> Application Shimrin
p I- pp g

Victim Triggers Vulnerability

A 4

Deliver the Weapon
——Diverse Attack Vectors

» Job Scheduling

Hooking
Dylib Hijacking

Installation
Install Backdoor or Malware
Command & Control Connection Proxy

Give Remote Instructions to Victim Domain Fronting

' —_—

Actions on Objectives

v

Long Duration —— Low-and-Slow Attack Patterns”

