
Building a provenance-based 
intrusion detection system

Thomas Pasquier, University of Bristol
AMSS, 08/12/2020

1



Talk loosely based on following publications

● Han et al. “SIGL: Securing Software Installations Through Deep Graph 
Learning”, USENIX Security Symposium 2021

● Han et al. “UNICORN: Revisiting Host-Based Intrusion Detection in the Age of 
Data Provenance”, NDSS 2020

● Pasquier et al. “Runtime Analysis of Whole-System Provenance”, ACM CCS 
2018

● Pasquier et al. “Practical Whole-System Provenance Capture”, ACM SoCC 2017

https://tfjmp.org

2



Plan: Building a provenance-based intrusion detection system

- Motivation
- What is provenance?
- How is useful?
- How to perform detection?
- How to evaluate
- Some insights from this work

3



Motivation

4



Motivation: System call based intrusion detection

System Calls

5



Motivation: System call based intrusion detection

Identify abnormal patterns

System Calls

6



Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions

System Calls

7



Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as benign action

System Calls

8



Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as benign action

Over a long period of time

[...]

[...]

System Calls

9



What is provenance?

10



What is provenance?
- From the French “provenir” meaning “coming from”
- Formal set of documents describing the origin of an art piece
- Sequence of

- Formal ownership
- Custody
- Places of storage

- Used for authentication

11



What is data-provenance?
- Represent interactions between objects of different types

- Data-items (entities)
- Processing (activities)
- Individuals and Organisations (agents)

- Represented as a directed acyclic graph (think information flows)
- Edges represent interactions between objects as dependencies
- It is a representation of history

- Immutable (unless it’s 1984)
- No dependency to the future

12



Example provenance (simplified)

P1

13



Example provenance (simplified)

P1 S1
create

14



Example provenance (simplified)

P1

P2

S1

F1

create

read

15



Example provenance (simplified)

P1

P2

S1

S2F1 Pckt

create

read send send

16



Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1 Pckt

Pckt

create

read send send

rcvrcv

17



Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1

F2

Pckt

Pckt

create

read send send

rcvrcvwrite

18



Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1

F2

Pckt

Pckt

create

read send send

rcvrcvwrite

Linux kernel compilation:
~2M graph elements

19



How is this useful?

20



Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships 
between events

21



Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships 
between events

22



Provenance-based intrusion detection

▪ Related events are connected even across long period of time

23



How to perform detection?

24



Assumptions (and limitations)
- Runtime detection
- We target environment with minimal human intervention

- relatively consistent behaviour
- e.g. web servers, CI pipelines etc...

- Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)

- Detect deviation from the model
- Several approaches being explored… 

25



Example: UNICORN

▪ Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced 
Persistent Threats”, NDSS 2020

26



Example: UNICORN

1) Graph streamed in, converted to histogram, labelled using (modified) 
struct2vec 

27



Example: UNICORN

2) At regular interval, histogram converted to a fixed size vector using 
similarity preserving graph sketching

28



Example: UNICORN

3) Feature vectors are clustered

29



Example: UNICORN

4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model

30



Relatively simple

▪ Labelled directed acyclic graph
– node/edge types
– security context (when available)

▪ Modification and combination of existing algorithms
– struct2vec
– similarity preserving hashing
– clustering

▪ Right combination + domain knowledge

31



How to evaluate?

32



Evaluation with DARPA datasets

33



Evaluation with DARPA datasets

SUCH GOOD RESULTS ARE NOT NORMAL

34



Building our own dataset

▪ Attack designed to look similar to background activity

35



Building our own dataset

▪ Attack designed to look similar to background activity
▪ Is that enough?

36



Some insights from this work

37



We can build practical provenance-based IDSs

▪ We can detect intrusion out of graph structure with little metadata
– Vertex type (thread, file, socket etc…)
– Edge type (read, write, connect etc…)

▪ Processing speed
– Current prototype
– Data generation speed < processing speed!

38



Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?

- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines

- Leads to unsatisfactory evaluation
- I may be able to compare to similar techniques (may reuse dataset)
- … very hard for unrelated one (i.e. ingest different data type)

- Adversarial ML?
39



Identifying threats: explainability is a problem

▪ There is a problem within the last batch of X graph elements
– 2,000 in previous figures

▪ Good luck finding out what went wrong
▪ Provenance forensic is an active field of research

– Promising work out of the DARPA programme
▪ … but could we do better during detection?
▪ Han et al. “SIGL: Securing Software Installations Through Deep Graph 

Learning”, USENIX Security Symposium 2021
– Graph LSTM Autoencoder
– Pinpoint issue in the graph, but...
– ...less complex problem
– ...smaller graphs
– Can we take such approach further?

40



Looking for ...

41

- PhD Students
- Postdocs: job advert to come (soon) on intrusion detection at the edge
- Collaborators

Get in touch: https://tfjmp.org



Thank you! Questions?
tfjmp.org

camflow.org

42



Comparison state of the art

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs" 
ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm

43



Runtime performance

44



Runtime performance

45



Runtime performance

Memory usage: ~500MB
CPU usage 15% on 1 core 

46



CamFlow capture mechanism
- Leverage existing kernel features whenever possible
- Avoid alteration of existing code
- We therefore build upon:

- Linux Security Module 
- to capture system events
- NetFilter
- to capture network events
- RelayFS 
- to transfer provenance to 

user space
- SecurityFS 
- to provide a userspace 

interface for settings

47



Extent of modification
Modifications to the Linux Kernel code

48

System Headers C File Total LoC

PASS (v2.6.27) 
pub. 2006

18 69 87 5100

LPM (v2.6.32)
pub. 2015

13 61 74 2294

CamFlow (v5.4.15)
circa 2020

3 0 3 4220



Capture overhead
Micro-benchmark Macro-benchmark

Selective: cost of allocating/freeing provenance “blob” + recording or not decision

Whole: Selective + cost of recording provenance information
49

Sys Call Whole Selective

stat 100% 28%

open/close 80% 18%

fork 6% 2%

exec 3% <1%

Prog. Whole Selective

unpack 2% <1%

build 2% 0%

postmark 11% 6%



IDS performance (more)

50



IDS performance (more)

51



IDS performance (more)

CPU over long time period? 15% CPU time across cores

52



Add a few slides on advanced persistent threats

53


