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Let’s talk about Tuneful




Talk based on the following publications

- Ferky et al. “Towards Seamless Configuration Tuning of
Big Data Analytics”, ICDCS 2019

- Fekry et al. “Tuneful: An Online Significance-Aware
Configuration Tuner for Big Data Analytics”, arxiv 2020

- Fekry et al. “To Tune or Not to Tune? In Search of
Optimal Configurations for Data Analytics”, KDD 2020

- Fekry et al. “Accelerating the Configuration Tuning of
Big Data Analytics with Similarity-aware Multitask
Bayesian Optimization”, BigData 2020



Backed by experiments

- 7429h of Spark execution (see KDD)

- Over Amazon Web Service and Google Cloud Platform
-  No Microsoft yet ;)

https://github.com/ayat-khairy/tuneful-data



Motivation

— Discussing with scientist and colleagues
- Using data analytics platform is easy

- .. using them efficiently 1is hard
- How do I configure this thing?

- Wasted budget

- How do I save money?
- 40% of jobs are recurrent

How can we help?



Challenges




Challenges: configuration parameters
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Challenges: finding the right configuration

- Using a good enough configuration?
- Building a general model?
- Needs hours of data, only feasible by cloud providers (maybe)

- Tuning for my specific workload?
- Is it worth the cost?
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Our idea

- Given a user and a cluster
- Assumption that most tasks occur more than once

Can we 1identify a better configuration while doing useful
work?
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Cost amortization model
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Cost amortization model
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Cost amortization model
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Cost amortization model
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Cost amortization model
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Solving the challenges




Overall architecture

- Spark extension

- Zero-knowledge tuning

- Significance-aware

- Similarity-aware

- Low exploration time

- .. Tfaster cost amortization

https://github.com/ayat-khairy/tuneful-code
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Overview
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Multi-round Sensitivity Analysis

- Naive approach run an extensive benchmark
- Instead we sample a few configuration point

- Build model to predict execution time
- Random Forest

- Empirically, we know few parameters are influential
- .. model does not need to be very accurate

- Gini dmportance to find influential parameters
- Features contributions based on how many times it is used in a tree
split
- Each round we eliminate X% unimportant parameters
(i.e. “fix” them)
- Run again for another round

21



Gaussian Process

- This time we need accuracy

- Use the significant parameters

- Predict execution time at n+l

- Rapidly converge towards optimal configuration

- When prediction consistently differ from observation
- Tuning needs to be redone
- Can be caused by change in dataset, cluster hardware etc.
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Gaussian Process
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Budget - based on empirical study

- Significant parameters exploration

- 20 samples (2 rounds at 10)
- Empirically correct results when compared to expensive Recursive
Feature Elimination* as ground truce

- Configuration Tuning

- 15 Samples
- Empirically good configurations

* Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine learning. 2002.
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Finding good configuration

- Tuneful 35 executions Z o —grr—
bu d get g Opentuner
. - [ RandomSearch
- All other 100 executions « 29 BN Tuneful
_ 2
Guntherx 2 100
- Genetic algorithm g
(]
- Opentuner+ o 0-

Bayes Pagerank TPC-H Wordcount

- Ensemble of search techniques
- Hill climbing, differential evolution and pattern search

*Guangdeng et al. Gunther: Search-based auto-tuning of MapReduce.

+Jason et al. Opentuner: An extensible framework for program autotuning.
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Reaching 10% of optimum
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Cost Amortisation
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Cost Amortisation
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Optimization




What could we improve?

- We configure each workload independently
- We do not learn from other workloads running on our
cluster

Maybe we should?
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Tuneful evaluation: limited-knowledge tuning

Same setting as before

Cluster ran workloads for a while
We captured execution metrics

Similarity between workload 2 S e S
via lower dimension projection
Assume similar workload have
similar execution parameters
Use Multi Task Gaussian

Process to optimize config. |

Learnt WL
Rep
Reconstructed
Exec. metrics
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Multi Task Gaussian Process

- We identified similar workload
- same significant parameters

- We use Multi Task Gaussian Process (MTGP)
- Each workload 1is a task in MTGP

- Allow to find a good
configuration much

Faster

- No SA

- 10 round for GP as
before
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(a) Multitask GP sample functions

(b) Independent GP

Modelling

(c) Multitask GP Modelling

Fig. 1: (a)The actual functions of a Multitask GP with three tasks. Task 2 and 3 are strongly correlated, 1 and 3 are anti-
correlated, and 1 and 2 are not correlated. (b) Independent single tasked GP modelling for Task 3. (c) Multitask GP modelling
for Task 3, utilizing the other tasks (figure source is [36] with minor edits applied for more clarity).
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Finding good configuration

-  Tuneful (zero-knowledge)

- Direct transfer

- Random Search

-  Simful (limited-knowledge tuneful) a.k.a. Transfer Learning + MTGP

Budget:

_ o Direct transfer i E i
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Tuneful evaluation: limited-knowledge tuning
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Simtune does generally much better!
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More workloads (tasks in MTGP), better?

- x 103
2 41 Tuneful o .
- Ra ndom Sea rCh = — S?m-aware r'//‘
= 3] Sim-aware-extended B ;
- Tuneful g 7| -- TuysTP Pl
. 8§ —#- RandomSearch .
- Direct Transfer Z2 21 e Direct Transfer
2E
- TL + STGP Y R >
- only significant parameters §
— 3 01 . . ' | |
SimTune (5 tasks) = o - - -

- SimTune-extended (8 tasks) Number of Executions
Simtune performs better

Able to leverage information from more workloads



Future work

- Modifying significant parameters analysis
- Li et al. “Statically Inferring Performance Properties of Software
Configurations” EuroSys 2020
- May remove the need for costly sensitivity analysis

- Further engineering and deployment
- Does it work in real life?

— Can we learn across clusters?
- Application beyond Spark? (probably yes)

hiring students for fall 2021 at UBC

looking for collaboration!
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Thank you!

tfimp@cs.ubc.ca
https://tfjmp.org
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