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The team

- Ayat Fekry, PhD student
- Lucian Carata, Senior Research Associate 
- Andrew Rice, Professor
- Andy Hopper, Professor 
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About me

- Assistant Professor at the University of Bristol
- Moving to UBC in Summer 2021
- Area of research

- Provenance-based Security/Auditing/IDS (SoCC, CCS, NDSS, USENIX Sec)
- Self-tuning data processing framework (KDD, ICDCS)
- Microsoft Cloud Computing Research Centre (http://www.mccrc.org/)
- Reproducibility of Scientific Results

- Observing and understanding what computer systems do

3

http://www.mccrc.org/


About me

- Assistant Professor at the University of Bristol
- Moving to UBC in Summer 2021
- Area of research

- Provenance-based Security/Auditing/IDS (SoCC, CCS, NDSS, USENIX Sec)
- Self-tuning data processing framework (KDD, ICDCS)
- Microsoft Cloud Computing Research Centre (http://www.mccrc.org/)
- Reproducibility of Scientific Results

- Observing and understanding what computer systems do
- Systems background

4

http://www.mccrc.org/


Let’s talk about Tuneful
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Talk based on the following publications

- Ferky et al. “Towards Seamless Configuration Tuning of 
Big Data Analytics”, ICDCS 2019

- Fekry et al. “Tuneful: An Online Significance-Aware 
Configuration Tuner for Big Data Analytics”, arxiv 2020

- Fekry et al. “To Tune or Not to Tune? In Search of 
Optimal Configurations for Data Analytics”, KDD 2020

- Fekry et al. “Accelerating the Configuration Tuning of 
Big Data Analytics with Similarity-aware Multitask 
Bayesian Optimization”, BigData 2020
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Backed by experiments

- 7429h of Spark execution (see KDD)
- Over Amazon Web Service and Google Cloud Platform

- No Microsoft yet ;)

https://github.com/ayat-khairy/tuneful-data
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Motivation

- Discussing with scientist and colleagues
- Using data analytics platform is easy
- … using them efficiently is hard

- How do I configure this thing?

- Wasted budget
- How do I save money?

- 40% of jobs are recurrent

How can we help?
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Challenges
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Challenges: configuration parameters

One model does not fit all

Amazon/Google provide
Configuration for Spark
Cluster (from experiment
25% to 63% slower than
optimal)

Significant parameters analysis
on HiBench Workloads
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Challenges: finding the right configuration

- Using a good enough configuration?
- Building a general model?

- Needs hours of data, only feasible by cloud providers (maybe)

- Tuning for my specific workload?
- Is it worth the cost?
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Our idea

- Given a user and a cluster
- Assumption that most tasks occur more than once

Can we identify a better configuration while doing useful 
work?
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Cost amortization model
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Cost amortization model
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Cost amortization model
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Cost amortization model
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Cost amortization model
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Solving the challenges
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Overall architecture

- Spark extension
- Zero-knowledge tuning
- Significance-aware
- Similarity-aware
- Low exploration time
- … faster cost amortization

https://github.com/ayat-khairy/tuneful-code
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Overview
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Multi-round Sensitivity Analysis

- Naive approach run an extensive benchmark
- Instead we sample a few configuration point
- Build model to predict execution time

- Random Forest

- Empirically, we know few parameters are influential
- … model does not need to be very accurate
- Gini importance to find influential parameters

- Features contributions based on how many times it is used in a tree 
split

- Each round we eliminate X% unimportant parameters
(i.e. “fix” them)

- Run again for another round 21



Gaussian Process

- This time we need accuracy
- Use the significant parameters
- Predict execution time at n+1
- Rapidly converge towards optimal configuration

- When prediction consistently differ from observation
- Tuning needs to be redone
- Can be caused by change in dataset, cluster hardware etc.
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Gaussian Process

- When prediction consistently differ from observation
- Tuning needs to be redone
- Can be caused by change in dataset, cluster hardware etc.

23



Budget - based on empirical study

- Significant parameters exploration
- 20 samples (2 rounds at 10)
- Empirically correct results when compared to expensive Recursive 

Feature Elimination* as ground truce

- Configuration Tuning
- 15 Samples
- Empirically good configurations

* Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for 
cancer classification using support vector machines. Machine learning. 2002.
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Finding good configuration

- Tuneful 35 executions
budget

- All other 100 executions
- Gunther*

- Genetic algorithm

- Opentuner+
- Ensemble of search techniques
- Hill climbing, differential evolution and pattern search

*Guangdeng et al. Gunther: Search-based auto-tuning of MapReduce.
+Jason et al. Opentuner: An extensible framework for program autotuning.
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Reaching 10% of optimum

- Same budget
- Time to get to

10% of optimum
- What matters is not 

only the number of 
samples but how fast
they execute

GP Converge towards the optimum and therefore reduce cost
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Cost Amortisation

- Let the algorithms run
and see if we save 
Money

- Plot cumulative cost
- Spoiler: random search

won’t ;)
- Gunther and Opentuner

converge to some local
minima eventually

- Tuneful has a spike in
cost at the start of the GP, then stabilise to close to
optimal
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Cost Amortisation

- Tuneful has a spike in
cost at the start of the GP, then stabilise to close to
optimal
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Optimization
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What could we improve?
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- We configure each workload independently
- We do not learn from other workloads running on our 

cluster

Maybe we should?



Tuneful evaluation: limited-knowledge tuning

- Same setting as before
- Cluster ran workloads for a while
- We captured execution metrics
- Similarity between workload

via lower dimension projection
- Assume similar workload have

similar execution parameters 
- Use Multi Task Gaussian 

Process to optimize config.
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Multi Task Gaussian Process 

- We identified similar workload 
- same significant parameters

- We use Multi Task Gaussian Process (MTGP)
- Each workload is a task in MTGP
- Allow to find a good

configuration much
Faster
- No SA
- 10 round for GP as

before
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Finding good configuration

- Tuneful (zero-knowledge)
- Direct transfer
- Random Search
- Simful (limited-knowledge tuneful) a.k.a. Transfer Learning + MTGP

Budget:

- random search 100
- Tuneful 25
- Simtune 10

33



Tuneful evaluation: limited-knowledge tuning

- Measure how many minutes
We need to find 
configuration at 10% of
the optimum.

Shorter sample execution time

Simtune does generally much better!
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More workloads (tasks in MTGP), better?

- Random Search
- Tuneful
- Direct Transfer
- TL + STGP

- only significant parameters

- SimTune (5 tasks)
- SimTune-extended (8 tasks)

Simtune performs better

Able to leverage information from more workloads
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Future work

- Modifying significant parameters analysis
- Li et al. “Statically Inferring Performance Properties of Software 

Configurations” EuroSys 2020
- May remove the need for costly sensitivity analysis

- Further engineering and deployment
- Does it work in real life?

- Can we learn across clusters?
- Application beyond Spark? (probably yes)

… hiring students for fall 2021 at UBC

looking for collaboration!
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Thank you!
tfjmp@cs.ubc.ca
https://tfjmp.org

37

mailto:tfjmp@cs.ubc.ca

