To tune or not to tune

Thomas Pasquier

tfjmp@cs.ubc.ca https://tfjmp.org

The team

- Ayat Fekry, PhD student
- Lucian Carata, Senior Research Associate
- Andrew Rice, Professor
- Andy Hopper, Professor

About me

- Assistant Professor at the University of Bristol
- Moving to UBC in Summer 2021
- Area of research
 - Provenance-based Security/Auditing/IDS (SoCC, CCS, NDSS, USENIX Sec)
 - Self-tuning data processing framework (KDD, ICDCS)
 - Microsoft Cloud Computing Research Centre (<u>http://www.mccrc.org/</u>)
 - Reproducibility of Scientific Results
- Observing and understanding what computer systems do

About me

- Assistant Professor at the University of Bristol
- Moving to UBC in Summer 2021
- Area of research
 - Provenance-based Security/Auditing/IDS (SoCC, CCS, NDSS, USENIX Sec)
 - Self-tuning data processing framework (KDD, ICDCS)
 - Microsoft Cloud Computing Research Centre (<u>http://www.mccrc.org/</u>)
 - Reproducibility of Scientific Results
- Observing and understanding what computer systems do
- Systems background

Let's talk about Tuneful

Talk based on the following publications

- Ferky et al. "Towards Seamless Configuration Tuning of Big Data Analytics", ICDCS 2019
- Fekry et al. "Tuneful: An Online Significance-Aware
 Configuration Tuner for Big Data Analytics", arxiv 2020
- Fekry et al. "To Tune or Not to Tune? In Search of
 Optimal Configurations for Data Analytics", KDD 2020
- Fekry et al. "Accelerating the Configuration Tuning of Big Data Analytics with Similarity-aware Multitask Bayesian Optimization", BigData 2020

Backed by experiments

- 7429h of Spark execution (see KDD)
- Over Amazon Web Service and Google Cloud Platform
 - No Microsoft yet ;)

https://github.com/ayat-khairy/tuneful-data

Motivation

- Discussing with scientist and colleagues
- Using data analytics platform is easy
- ... using them efficiently is hard
 - How do I configure this thing?
- Wasted budget
 - How do I save money?
- 40% of jobs are recurrent

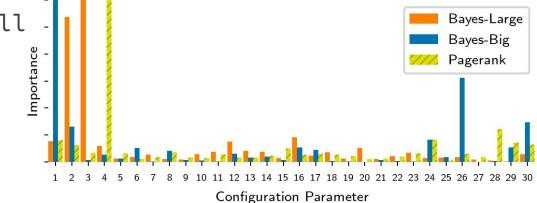
How can we help?

Challenges

Challenges: configuration parameters

One model does not fit all

Amazon/Google provide Configuration for Spark Cluster (from experiment 25% to 63% slower than optimal)



Significant parameters analysis on HiBench Workloads

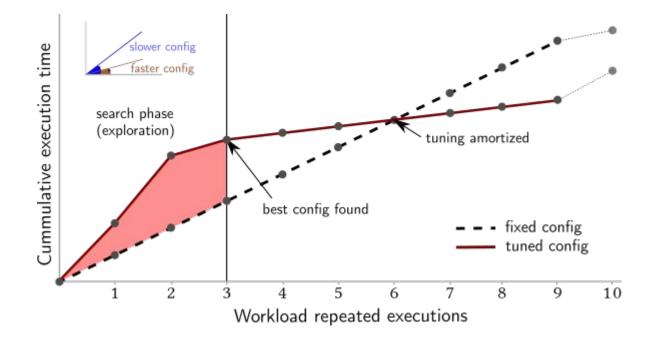
Challenges: finding the right configuration

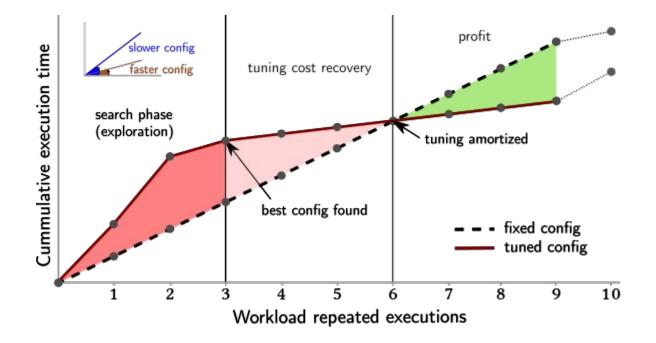
- Using a good enough configuration?
- Building a general model?
 - Needs hours of data, only feasible by cloud providers (maybe)
- Tuning for my specific workload?
 - Is it worth the cost?

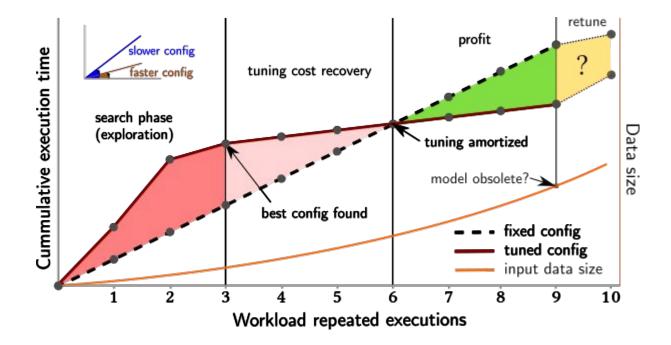
Our idea

- Given a user and a cluster
- Assumption that most tasks occur more than once

Can we identify a better configuration while doing useful work?



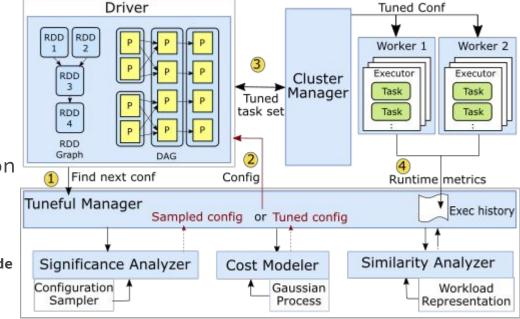




Solving the challenges

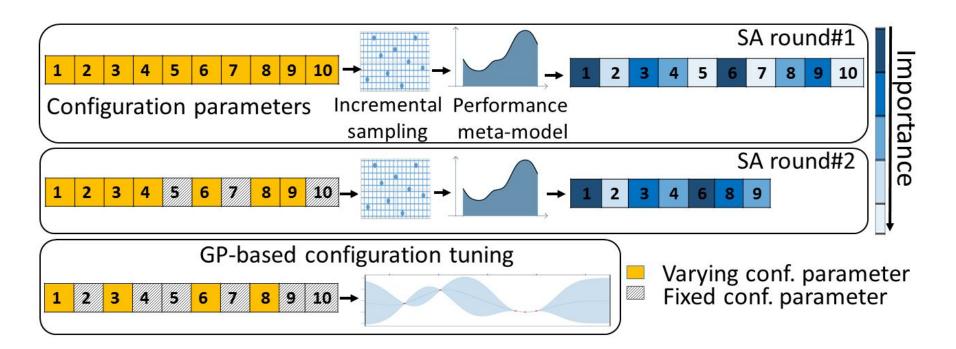
Overall architecture

- Spark extension
- Zero-knowledge tuning
- Significance-aware
- Similarity-aware
- Low exploration time
- ... faster cost amortization



https://github.com/ayat-khairy/tuneful-code

Overview



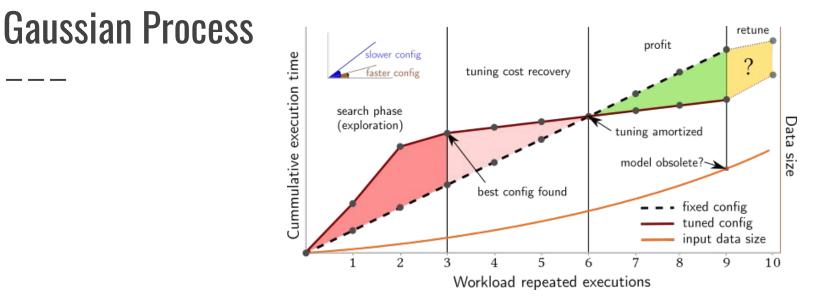
Multi-round Sensitivity Analysis

- Naive approach run an extensive benchmark
- Instead we sample a few configuration point
- Build model to predict execution time
 - Random Forest
- Empirically, we know few parameters are influential
- ... model does not need to be very accurate
- Gini importance to find influential parameters
 - Features contributions based on how many times it is used in a tree split
- Each round we eliminate X% unimportant parameters (i.e. "fix" them)
- Run again for another round

Gaussian Process

- This time we need accuracy
- Use the significant parameters
- Predict execution time at n+1
- Rapidly converge towards optimal configuration

- When prediction consistently differ from observation
 - Tuning needs to be redone
 - Can be caused by change in dataset, cluster hardware etc.



- When prediction consistently differ from observation
 - Tuning needs to be redone
 - Can be caused by change in dataset, cluster hardware etc.

Budget - based on empirical study

- Significant parameters exploration
 - 20 samples (2 rounds at 10)
 - Empirically correct results when compared to expensive Recursive
 Feature Elimination* as ground truce
- Configuration Tuning
 - 15 Samples
 - Empirically good configurations

* Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer classification using support vector machines. Machine learning. 2002.

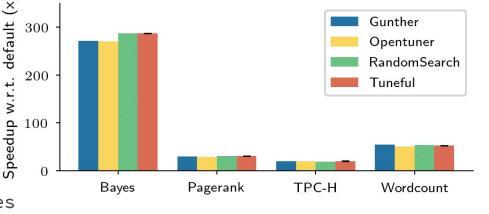
Finding good configuration

- Tuneful 35 executions budget
- All other 100 executions
- Gunther*
 - Genetic algorithm
- Opentuner+
 - Ensemble of search techniques
 - Hill climbing, differential evolution and pattern search

default (x)

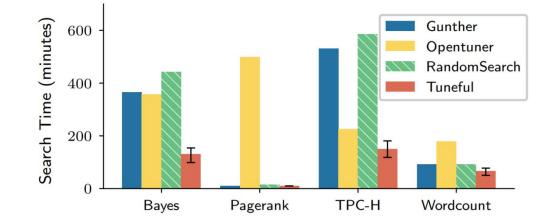
*Guangdeng et al. Gunther: Search-based auto-tuning of MapReduce.

+Jason et al. Opentuner: An extensible framework for program autotuning.



Reaching 10% of optimum

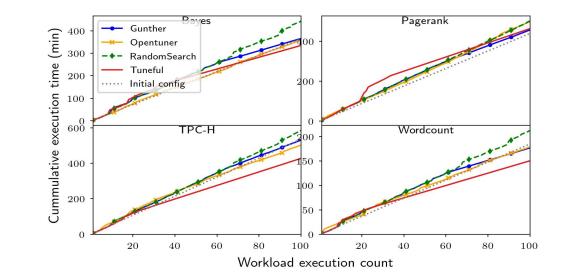
- Same budget
- Time to get to
 10% of optimum
- What matters is not only the number of samples but how fast they execute



GP Converge towards the optimum and therefore reduce cost

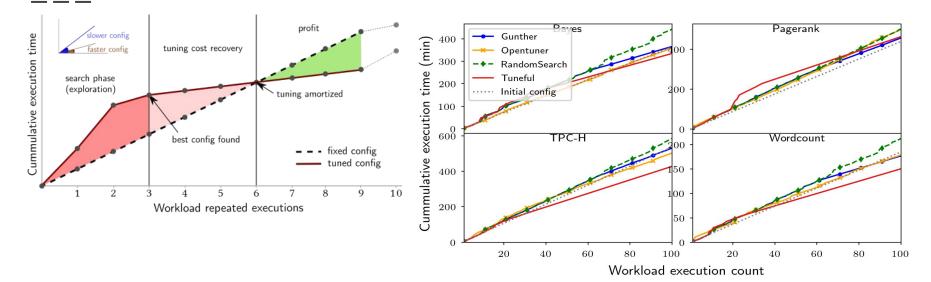
Cost Amortisation

- Let the algorithms run and see if we save Money
- Plot cumulative cost
- Spoiler: random search
 won't ;)
- Gunther and Opentuner converge to some local minima eventually



 Tuneful has a spike in cost at the start of the GP, then stabilise to close to optimal

Cost Amortisation



 Tuneful has a spike in cost at the start of the GP, then stabilise to close to optimal

Optimization

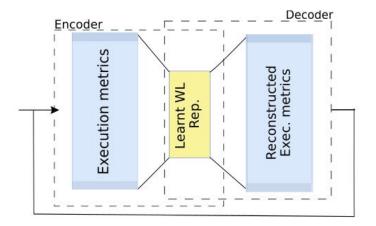
What could we improve?

- We configure each workload independently
- We do not learn from other workloads running on our cluster

Maybe we should?

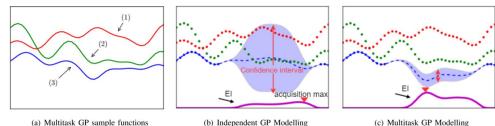
Tuneful evaluation: limited-knowledge tuning

- Same setting as before
- Cluster ran workloads for a while
- We captured execution metrics
- Similarity between workload
 via lower dimension projection
- Assume similar workload have similar execution parameters
- Use Multi Task Gaussian
 Process to optimize config.



Multi Task Gaussian Process

- We identified similar workload
 - same significant parameters
- We use Multi Task Gaussian Process (MTGP)
- Each workload is a task in MTGP
- Allow to find a good configuration much Faster
 - No SA
 - 10 round for GP as before



(a) Multitask GP sample functions

(c) Multitask GP Modelling

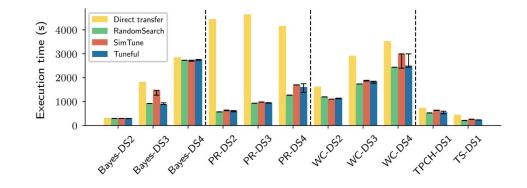
Fig. 1: (a)The actual functions of a Multitask GP with three tasks. Task 2 and 3 are strongly correlated, 1 and 3 are anticorrelated, and 1 and 2 are not correlated. (b) Independent single tasked GP modelling for Task 3. (c) Multitask GP modelling for Task 3, utilizing the other tasks (figure source is [36] with minor edits applied for more clarity).

Finding good configuration

- Tuneful (zero-knowledge)
- Direct transfer
- Random Search
- Simful (limited-knowledge tuneful) a.k.a. Transfer Learning + MTGP

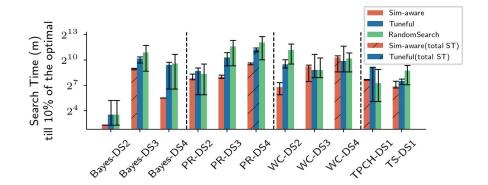
Budget:

- random search 100
- Tuneful 25
- Simtune 10



Tuneful evaluation: limited-knowledge tuning

Measure how many minutes
 We need to find
 configuration at 10% of
 the optimum.



Shorter sample execution time

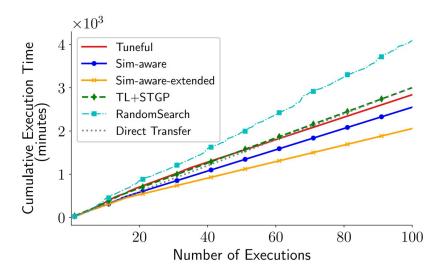
Simtune does generally much better!

More workloads (tasks in MTGP), better?

- Random Search
- Tuneful
- Direct Transfer
- TL + STGP
 - only significant parameters
- SimTune (5 tasks)
- SimTune-extended (8 tasks)

Simtune performs better

Able to leverage information from more workloads



Future work

- Modifying significant parameters analysis
 - Li et al. "Statically Inferring Performance Properties of Software Configurations" EuroSys 2020
 - May remove the need for costly sensitivity analysis
- Further engineering and deployment
 - Does it work in real life?
- Can we learn across clusters?
- Application beyond Spark? (probably yes)

... hiring students for fall 2021 at UBC

looking for collaboration!

Thank you! tfjmp@cs.ubc.ca https://tfjmp.org