Accelerating the Configuration Tuning of Big Data Analytics with Similarity-aware Multitask Bayesian Optimization

Ayat Fekry, Lucian Carata, Thomas Pasquier, Andrew Rice

akmf3@cl.cam.ac.uk
lucian.carata@cl.cam.ac.uk
High-level problem overview

• We want to:
 – optimize configurations of data processing frameworks (Hadoop, Spark, Flink) in workload-specific ways.
 – allow amortization of tuning costs in realistic settings:
 • evolving input data (increase in size, change of characteristics)
 • an elastic cluster configuration
High-level problem overview

• We want to:
 – optimize execution of workloads in data processing frameworks (Hadoop, Spark, Flink)
 – allow amortization of tuning costs in realistic settings:
 ● evolving input data (increase in size, change of characteristics)
 ● an elastic cluster configuration

• When assuming repeated workload execution
 – daily/weekly/monthly reporting
 – incremental data analysis
 – frequent analytics queries/processing
High-level solution overview

- **How:**
 - By incrementally tuning the configuration of the framework
 - per workload
 - determining and tuning only significant parameters
 - aim is to quickly converge to configurations close to optimum
High-level solution overview

• How:
 - By incrementally tuning the configuration of the framework
 • per workload
 • determining and tuning only significant parameters
 - By leveraging existing tuning knowledge across similar workloads
High-level solution overview

• **How:**
 - By incrementally tuning the configuration of the framework
 - per workload
 - determining and tuning only significant parameters
 - By leveraging existing tuning knowledge across similar workloads
 - By carefully combining a number of established ML techniques and adapting them to the problem domain
Required puzzle pieces

- **Workload characterization**
 1) Workload monitoring
 2) Workload representations
 3) Similarity analysis
Required puzzle pieces

• **Workload characterization**
 1) Workload monitoring
 2) Workload representations
 3) Similarity analysis

• **Similarity-aware tuning**
 4) Multitask Bayesian Learning

[1] K. Swersky et. all, *Multi-task bayesian optimization*
Workload characterization

- Monitoring workload characteristics & resource consumption
 - Metric examples:
 - number of tasks per stage, input/output size, data spilled to disk, etc
 - CPU time, memory, GC time, serialization time, ...
 - Representing metrics in relative terms
 - GC time as proportion of total CPU time
 - Amount of shuffled/disk spilled data as proportion of total input data
Workload characterization

- **Workload representation**
 - Would like a **low-dimensionality** representation because it’s difficult to come up with informative distance metrics in high-dimensional space
 - We propose an autoencoder based solution, where the low-dimensionality representation is **learned**
 - offline phase based on historic execution metrics
 - resulting encoding/decoding model can be reused
• **Similarity analysis**

 - Given new workload, find a **source** (already tuned) workload

 • Closest in encoded representation space (using L_1 norm)

 • Distance computed on a fixed **fingerprinting configuration** for the new workload
Similarity-aware tuning

- Assume a source workload s was found for workload w
 1) Tune the same significant parameters as for s
 2) Retrieve Bayesian tuning model of s, T_s
 3) Add w as a new task to T_s
 4) Suggest the next (tuned) configuration sample, cs_w for w
 5) Update tuning model with metrics from executing w with configuration cs_w
Similarity-aware tuning

- Natural criteria for stopping the tuning
 - e.g: Acquisition function maximum (Expected Improvement) drops below 10%

- Method able to detect inaccurate similar workload matching
 - Large difference between cost predicted by model and actual execution, across multiple executions
Experiments

The table below shows the input data sizes (DS) for different workloads and their corresponding units:

<table>
<thead>
<tr>
<th>Workload (Abbrev)</th>
<th>Input data sizes (DS)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DS1</td>
<td>DS2</td>
</tr>
<tr>
<td>PageRank (PR)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Bayes Classifier (Bayes)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Wordcount (WC)</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>TPC-H Benchmark (TPCH)</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Terasort (TS)</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

pre-tuned (source) set
Tuned execution times (at convergence)

Source dataset: *-DS1
Tuned execution times (at convergence)

Source dataset: *-DS1
Time until finding best configuration

Source dataset: *-DS1
Extended tuned (source) dataset for Bayes-DS3

Source dataset: *-DS1 + Bayes DS2
Tuning cost amortization (Bayes-DS3)

SimTune source dataset: *-DS1
SimTune-extended source dataset: *-DS1 + Bayes-DS2
Thank you! Ready for questions!

https://github.com/ayat-khairiy/simtune

Interested in discussing off-line or collaborating?

akmf3@cl.cam.ac.uk
lucian.carata@cl.cam.ac.uk