Provenance-based Intrusion Detection

Thomas Pasquier
University of Bristol
https://tfimp.org
12/11/2020

Talk loosely based on following publications

e Han et al. “SIGL: Securing Software Installations Through Deep Graph

Learning”, USENIX Security 2021
e Han et al. “UNICORN: Revisiting Host-Based Intrusion Detection in the Age of

Data Provenance”, NDSS 2020

e Pasquier et al. “Runtime Analysis of Whole-System Provenance”, ACM CCS
2018

e Pasquier et al. “Practical Whole-System Provenance Capture”, ACM SoCC 2017

Motivation: System call based intrusion detection

System Calls

Motivation: System call based intrusion detection

System Calls

Identify abnormal patterns

| >

Motivation: System call based intrusion detection

System Calls

Identify abnormal patterns

| >

Hidden among benign actions

Motivation: System call based intrusion detection

System Calls

| |
| |
.]
| | Identify abnormal patterns
: N >
| |
| |
| |
| |

Hidden among benign actions
Masquerading as benign action

Motivation: System call based intrusion detection

System Calls

[.]

[.]

Identify abnormal patterns
| Y

Hidden among benign actions
Masquerading as benign action
Over a long period of time

What is provenance?

What is provenance?

- From the French “provenir’” meaning “coming from”
- Formal set of documents describing the origin of an art piece

- Sequence of .

- Formal ownership
- Custody
- Places of storage

- Used for authentication

What is data-provenance?

Represent interactions between objects of different types
Data-items (entities)
Processing (activities)
Individuals and Organisations (agents)

Represented as a directed acyclic graph (think information flows)
Edges represent interactions between objects’ states as dependencies

It is a representation of history of a system execution
Immutable (unless it's 1984)
No dependency to the future

10

How is this useful?

Provenance-based intrusion detection

- Intuition: provenance graph exposes causality relationships
between events

12

Provenance-based intrusion detection

- Intuition: provenance graph exposes causality relationships
between events

13

Provenance-based intrusion detection

Related events are connected even across long period of time

14

How to perform detection?

Assumptions (and limitations)

Runtime detection
We target environment with minimal human intervention
- relatively consistent behaviour
- e.g. web servers, Cl pipelines etc...
Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)
Detect deviation from the model

Several approaches being explored...

16

Example: UNICORN

= INEEEE - ° o0 o
o« 4o
Yee”
O...
I = DD
©, @

» Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced
Persistent Threats”, NDSS 2020

Example: UNICORN

- DEEEEE - ® oo,
¢« s0a°
Yee”
O...
| g——
©, @

1) Graph streamed in, converted to histogram, labelled using (modified)
struct2vec

18

Example: UNICORN

= [([I111] ®oo o
o s02°
Yoo~
O...
I) O
©) @

2) At regular interval, histogram converted to a fixed size vector using
similarity preserving graph sketching

19

Example: UNICORN
} |]_] =) EEEEEN O

= INEEEE - ° o0 o
o« 4o
Yee”
0...
| = DD
@

3) Feature vectors are clustered

20

Example: UNICORN
} ll_-] =3 B

= IEDEEE o0 o
e +0o°
Yoo~
O...
I) [(TTT11]
©) @

4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model

21

Relatively simple

Labelled directed acyclic graph

— node/edge types

— security context (when available)

Modification and combination of existing algorithms
— struct2vec

— similarity preserving hashing

— clustering

Right combination + domain knowledge

22

Some insights from this work

We can build practical provenance-based IDSs

We can detect intrusion out of graph structure with little metadata
— Vertex type (thread, file, socket etc...)
— Edge type (read, write, connect etc...)
Processing speed
— Current prototype
— Data generation speed < processing speed!

24

Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?
- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines
- Leads to unsatisfactory evaluation
- | may be able to compare to similar techniques (may reuse dataset)
- ... very hard for unrelated one (i.e. ingest different data type)

- Adversarial ML?

25

Identifying threats: explainability is a problem

There is a problem within the last batch of X graph elements
— 2,000 in previous figures

Good luck finding out what went wrong

Provenance forensic is an active field of research
— Promising work out of the DARPA programme

... but could we do better during detection?

26

Ongoing projects

Towards more interpretable provenance-based IDSs

e PhD student project (Xueyuan “Michael” Han)

e Collaborators
o Harvard University
o UBC
o NEC Labs America

e Deep graph learning techniques
e Precisely identifying attacks within a provenance-graph
e Generating actionable reports

28

A framework for Provenance-based forensics

e PhD student project (Priyanka Badva)

e (Collaborators
o SRI International

e Provenance graphs are large and complex (several millions nodes)
e Designing tools and techniques to identify/explain attacks
e \Working with my colleague Ryan

29

Distributed IDS

- Edge network
- Collaboration with Toshiba (£4M)

- Exploring distributed learning
Poisoning
Mechanism
Etc.

- Large testbed planned (work starting January)
- Hiring 2 postdocs at Bristol
- Money available for an intern short term (+-covid)

30

Kernel partitioning

PhD student project (Soo Yee Lim)

Collaborators
o HP Labs Bristol
o Royal Holloway, University of London
o University of Otago

Leveraging CHERI/ARM Morello hardware

o Hardware capabilities
Implement kernel partitioning in the Linux OS

31

Thank you! Questions?

https://tfimp.org
thomas.pasquier@bristol.ac.uk

https://tfjmp.org
mailto:thomas.pasquier@bristol.ac.uk

How to evaluate?

33

Comparison state

Experiment Dataset # of Graphs Avg. |[V| Avg. |[E| Preprocessed Data Size (GiB)
YouTube 100 8,292 113,229 0.3

Gmail 100 6,827 37,382 0.1

StreamSpot Download 100 8,831 310,814 1
VGame 100 8,637 112,958 0.4

CNN 100 8,990 294,903 09

Attack 100 8,891 28,423 0.1

TABLE I: Characteristics of the StreamSpot dataset. The dataset is publicly

available only in a preprocessed format.

of the art

Experiment | Precision = Recall =~ Accuracy F-Score
StreamSpot (baseline) 0.74 N/A 0.66 N/A
R=1 0.51 1.0 0.60 0.68
R =3 0.98 0.93 0.96 0.94

TABLE II: Comparison to StreamSpot on the StreamSpot dataset. We estimate
StreamSpot’s average accuracy and precision from the figure included in the
paper [83], which does not report exact values. They did not report recall or
F-score.

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs"

ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm

34

Evaluation with DARPA datasets

Experiment ~ Dataset # of Graphs Avg. |V| Avg. |[E| Raw Data Size (GiB)
DARPA Benign 66 59,983 4,811,836 271
CADETS Attack 8 386,548 5,160,963 38
DARPA Benign 43 2,309 4,199,309 441
ClearScope Attack 51 11,769 4,273,003 432
DARPA Benign 2 19,461 1,913,202 4
THEIA Attack 25 275,822 4,073,621 85

Experiment | Precision Recall ~ Accuracy F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

TABLE V: Experimental results of the DARPA datasets.

35

Evaluation with DARPA datasets

Experiment ~ Dataset # of Graphs Avg. |V| Avg. |[E| Raw Data Size (GiB)
DARPA Benign 66 59,983 4,811,836 271
CADETS Attack 8 386,548 5,160,963 38
DARPA Benign 43 2,309 4,199,309 441
ClearScope Attack 51 11,769 4,273,003 432
DARPA Benign 2 19,461 1,913,202 4
THEIA Attack 25 275,822 4,073,621 85

Experiment | Precision Recall ~ Accuracy F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

TABLE V: Experimental results of the DARPA datasets.

SUCH GOOD RESULTS ARE NOT NORMAL

36

Building our own dataset

Experiment Dataset # of Graphs Avg. |[V| Avg. [E| Raw Data Size (GiB)

Experiment | Precision = Recall ~ Accuracy F-Score
SC-1 Benign 125 265,424 975,226 64
Attack 25 257,156 957,968 12 SC-1 0.85 0.96 0.90 0.90
S Benign 125 238338 OI1,153 59 SC-2 0.75 0.80 0.77 0.78
g Attack 25 243,658 949,887 12 TABLE VIII: Experimental results of the supply-chain APT attack scenarios.
TABLE VI: Characteristics of the datasets used in the supply-chain APT attack
experiments.

= Attack designed to look similar to background activity

37

Building our own dataset

Experiment Dataset # of Graphs Avg. |[V| Avg. [E| Raw Data Size (GiB)

Experiment | Precision = Recall ~ Accuracy F-Score
SC-1 Benign 125 265,424 975,226 64
Attack 25 257,156 957,968 12 SC-1 0.85 0.96 0.90 0.90
S Benign 125 238338 OI1,153 59 SC-2 0.75 0.80 0.77 0.78
g Attack 25 243,658 949,887 12 TABLE VIII: Experimental results of the supply-chain APT attack scenarios.
TABLE VI: Characteristics of the datasets used in the supply-chain APT attack
experiments.

= Attack designed to look similar to background activity
= |s that enough?

38

Runtime performance

Fig. 4: Total number of processed edges over time (in seconds) in the SC-1 experimental workload with varying batch sizes (Fig. 4(a)), sketch sizes (Fig. 4(b)),
hop counts (Fig. 4(c)), and intervals of sketch generation (Fig. 4(d)). Dashed blue line represents the speed of graph edges streamed into UNICORN for analysis.
Triangle maroon baseline has the same configurations as those used in our experiments and indicates the values of the controlled parameters (that remain
constant) in each figure.

1
o 7
/ 4 7 i
—~ 08 /
2
4]
o0
=
53]
& 0%
=]
&
8 ol
1%
= ‘amFlow
) Cam
& oal “o- Camflow Sketch = 500
i § / o— Batch = 1,000 Sketch = 1,000
7 Buch = 3000 Sketch = 2000
4/ 4 Batch = 6000 /’ +— Sketch
L] —+— Batch = 10,000 o Sketch = 10,000
(a): Batch (b): Sketch
106
1
4
~ 08| .
2
8
k=1)
=
o
@ 06 ~
I=}
&
v
= CamFlow
=3 e
T o CamFlow
o Interval = 500
——
o +— Interval = 5,500
O gp @ 40 0 P @ 10 O 98 ® 6 0 O b 48 ® 3P g 0 O ;98 ® 6 0
Time (seconds) Time (seconds)
(¢): Hop (d): Tnterval
F CPU & Memory Utilization C ion Parameter Parameter Value Max Memory Usage (MB)

R=1 3R

Runtime performance

Graph Size (# of Edges)

0.8

0.6

0.4

0.2

\

/ x CamFlow

—6- Hop =1
Hop =2

—a— Hop=3
. Hop = 4
Hop =5

0 g9

O

1%

A0 420 40 41O g00 420 460 g1© o°

Time (seconds)
(c): Hop

40

Runtime performance

Fig. 4: Total number of processed edges over time (in seconds) in the SC-1 experimental workload with varying batch sizes (Fig. 4(a)), sketch sizes (Fig. 4(b)),
hop counts (Fig. 4(c)), and intervals of sketch generation (Fig. 4(d)). Dashed blue line represents the speed of graph edges streamed into UNICORN for analysis.
Triangle maroon baseline has the same configurations as those used in our experiments and indicates the values of the controlled parameters (that remain
constant) in each figure.

1

Memory usage: ~500MB

CPU usage 15% on 1 core g
°© il e

| o Batch = 6000
0

—+— Buch = 10000

——— Sketch = 10.000

(a): Batch (b): Sketch
106
1
~ 08
2
8
k=1)
=
o
o« 08| .
I=}
&
8 o
v
= wFlow
S, e Cam
g o, i CanFlow
o Interval = 500
teral = 1,000
)% o Imeral = 3000
o e +— Interval = 5,500
O gh W 40 @ P ® 18 P g 4O O g5 40 © P ® 1O P
Time (seconds) Time (seconds)
(c): Hop (d): Tnterval
F CPU & Memory Utilization C ion Parameter _ Parameter Value Max Memory Usage (MB)

R=1 3R

