
Building a provenance-based 
intrusion detection system

Thomas Pasquier, University of Bristol
Toshiba, 26/11/2020

1



Talk loosely based on following publications

● Han et al. “UNICORN: Revisiting Host-Based Intrusion Detection in the Age of 
Data Provenance”, NDSS 2020

● Pasquier et al. “Runtime Analysis of Whole-System Provenance”, ACM CCS 
2018

● Han et al. “Provenance-based Intrusion Detection: Opportunities and 
Challenges”, USENIX TaPP 2018

● Han et al. “FRAPpuccino: Fault-detection through Runtime Analysis of 
Provenance”, USENIX HotCloud 2017

● Pasquier et al. “Practical Whole-System Provenance Capture”, ACM SoCC 2017

2



Motivation: System call based intrusion detection

System Calls

3



Motivation: System call based intrusion detection

Identify abnormal patterns

System Calls

4



Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions

System Calls

5



Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as benign action

System Calls

6



Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as benign action

Over a long period of time

[...]

[...]

System Calls

7



What is provenance?

8



What is provenance?
- From the French “provenir” meaning “coming from”
- Formal set of documents describing the origin of an art piece
- Sequence of

- Formal ownership
- Custody
- Places of storage

- Used for authentication

9



What is data-provenance?
- Represent interactions between objects of different types

- Data-items (entities)
- Processing (activities)
- Individuals and Organisations (agents)

- Represented as a directed acyclic graph (think information flows)
- Edges represent interactions between objects as dependencies
- It is a representation of history

- Immutable (unless it’s 1984)
- No dependency to the future

10



Example provenance (simplified)

P1

11



Example provenance (simplified)

P1 S1
create

12



Example provenance (simplified)

P1

P2

S1

F1

create

read

13



Example provenance (simplified)

P1

P2

S1

S2F1 Pckt

create

read send send

14



Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1 Pckt

Pckt

create

read send send

rcvrcv

15



Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1

F2

Pckt

Pckt

create

read send send

rcvrcvwrite

16



Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1

F2

Pckt

Pckt

create

read send send

rcvrcvwrite

Linux kernel compilation:
~2M graph elements

17



How is this useful?

18



Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships 
between events

19



Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships 
between events

20



Provenance-based intrusion detection

▪ Related events are connected even across long period of time

21



How do we get the data?

22



Capture methods

Examples
1. Balakrishnan et al. "OPUS: A Lightweight 

System for Observational Provenance in 
User Space" Workshop on the Theory and 
Practice of Provenance. 2013

2. Muniswamy-Reddy et al. 
"Provenance-aware storage systems" 
USENIX ATC. 2006.

3. Pasquier et al. "Practical whole-system 
provenance capture" SoCC. 2017

4. Gehani et al. "SPADE: support for 
provenance auditing in distributed 
environments" Middleware Conference. 
2012

23



Capture methods

Examples
1. Balakrishnan et al. "OPUS: A Lightweight 

System for Observational Provenance in 
User Space" Workshop on the Theory and 
Practice of Provenance. 2013

2. Muniswamy-Reddy et al. 
"Provenance-aware storage systems" 
USENIX ATC. 2006.

3. Pasquier et al. "Practical whole-system 
provenance capture" SoCC. 2017

4. Gehani et al. "SPADE: support for 
provenance auditing in distributed 
environments" Middleware Conference. 
2012

24



Interposition is unsafe

▪ Watson "Exploiting Concurrency 
Vulnerabilities in System Call Wrappers" 
WOOT. 2007

▪ Time-of-audit-to-time-of-use attack
– Race condition

▪ Syntactic Race
– different copy of parameters

▪ Semantic Race
– Kernel state may change

25



Capture methods

Examples
1. Based on Linux reference monitor
2. Best accuracy
3. Stronger formal guarantees
4. Formally specified semantic
5. Best performance

Pasquier et al. “Runtime Analysis of 
Whole-System Provenance”, CCS 2018

26



How to perform detection?

27



Assumptions (and limitations)
- Runtime detection
- We target environment with minimal human intervention

- relatively consistent behaviour
- e.g. web servers, CI pipelines etc...

- Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)

- Detect deviation from the model
- Several approaches being explored… 

28



Example: UNICORN

▪ Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced 
Persistent Threats”, NDSS 2020

29



Example: UNICORN

1) Graph streamed in, converted to histogram, labelled using (modified) 
struct2vec 

30



Example: UNICORN

2) At regular interval, histogram converted to a fixed size vector using 
similarity preserving graph sketching

31



Example: UNICORN

3) Feature vectors are clustered

32



Example: UNICORN

4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model

33



Relatively simple

▪ Labelled directed acyclic graph
– node/edge types
– security context (when available)

▪ Modification and combination of existing algorithms
– struct2vec
– similarity preserving hashing
– clustering

▪ Right combination + domain knowledge

34



How to evaluate?

35



Comparison state of the art

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs" 
ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm

36



Evaluation with DARPA datasets

37



Evaluation with DARPA datasets

SUCH GOOD RESULTS ARE NOT NORMAL

38



Building our own dataset

▪ Attack designed to look similar to background activity

39



Building our own dataset

▪ Attack designed to look similar to background activity
▪ Is that enough?

40



Runtime performance

41



Runtime performance

42



Runtime performance

Memory usage: ~500MB
CPU usage 15% on 1 core 

43



Some insights from this work

44



We can build practical provenance-based IDSs

▪ We can detect intrusion out of graph structure with little metadata
– Vertex type (thread, file, socket etc…)
– Edge type (read, write, connect etc…)

▪ Processing speed
– Current prototype
– Data generation speed < processing speed!

45



Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?

- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines

- Leads to unsatisfactory evaluation
- I may be able to compare to similar techniques (may reuse dataset)
- … very hard for unrelated one (i.e. ingest different data type)

- Adversarial ML?
46



Identifying threats: explainability is a problem

▪ There is a problem within the last batch of X graph elements
– 2,000 in previous figures

▪ Good luck finding out what went wrong
▪ Provenance forensic is an active field of research

– Promising work out of the DARPA programme
▪ … but could we do better during detection?

47



Thank you! Questions?
tfjmp.org

camflow.org

48



CamFlow capture mechanism
- Leverage existing kernel features whenever possible
- Avoid alteration of existing code
- We therefore build upon:

- Linux Security Module 
- to capture system events
- NetFilter
- to capture network events
- RelayFS 
- to transfer provenance to 

user space
- SecurityFS 
- to provide a userspace 

interface for settings

49



Extent of modification
Modifications to the Linux Kernel code

50

System Headers C File Total LoC

PASS (v2.6.27) 
pub. 2006

18 69 87 5100

LPM (v2.6.32)
pub. 2015

13 61 74 2294

CamFlow (v5.4.15)
circa 2020

3 0 3 4220



Capture overhead
Micro-benchmark Macro-benchmark

Selective: cost of allocating/freeing provenance “blob” + recording or not decision

Whole: Selective + cost of recording provenance information
51

Sys Call Whole Selective

stat 100% 28%

open/close 80% 18%

fork 6% 2%

exec 3% <1%

Prog. Whole Selective

unpack 2% <1%

build 2% 0%

postmark 11% 6%



IDS performance (more)

52



IDS performance (more)

53



IDS performance (more)

CPU over long time period? 15% CPU time across cores

54



Add a few slides on advanced persistent threats

55


