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Talk loosely based on following publications

● Han et al. “UNICORN: Revisiting Host-Based Intrusion Detection in the Age of 
Data Provenance”, NDSS 2020

● Pasquier et al. “Runtime Analysis of Whole-System Provenance”, ACM CCS 
2018

● Han et al. “Provenance-based Intrusion Detection: Opportunities and 
Challenges”, USENIX TaPP 2018

● Han et al. “FRAPpuccino: Fault-detection through Runtime Analysis of 
Provenance”, USENIX HotCloud 2017

● Pasquier et al. “Practical Whole-System Provenance Capture”, ACM SoCC 2017
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Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as benign action

Over a long period of time

[...]

[...]
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What is provenance?
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What is provenance?
- From the French “provenir” meaning “coming from”
- Formal set of documents describing the origin of an art piece
- Sequence of

- Formal ownership
- Custody
- Places of storage

- Used for authentication
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What is data-provenance?
- Represent interactions between objects of different types

- Data-items (entities)
- Processing (activities)
- Individuals and Organisations (agents)

- Represented as a directed acyclic graph (think information flows)
- Edges represent interactions between objects as dependencies
- It is a representation of history

- Immutable (unless it’s 1984)
- No dependency to the future
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Example provenance (simplified)
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Example provenance (simplified)
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Linux kernel compilation:
~2M graph elements
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How is this useful?
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Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships 
between events
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Provenance-based intrusion detection

▪ Related events are connected even across long period of time
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How do we get the data?
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Capture methods

Examples
1. Balakrishnan et al. "OPUS: A Lightweight 

System for Observational Provenance in 
User Space" Workshop on the Theory and 
Practice of Provenance. 2013

2. Muniswamy-Reddy et al. 
"Provenance-aware storage systems" 
USENIX ATC. 2006.

3. Pasquier et al. "Practical whole-system 
provenance capture" SoCC. 2017

4. Gehani et al. "SPADE: support for 
provenance auditing in distributed 
environments" Middleware Conference. 
2012
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Interposition is unsafe

▪ Watson "Exploiting Concurrency 
Vulnerabilities in System Call Wrappers" 
WOOT. 2007

▪ Time-of-audit-to-time-of-use attack
– Race condition

▪ Syntactic Race
– different copy of parameters

▪ Semantic Race
– Kernel state may change
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Capture methods

Examples
1. Based on Linux reference monitor
2. Best accuracy
3. Stronger formal guarantees
4. Formally specified semantic
5. Best performance

Pasquier et al. “Runtime Analysis of 
Whole-System Provenance”, CCS 2018
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How to perform detection?
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Assumptions (and limitations)
- Runtime detection
- We target environment with minimal human intervention

- relatively consistent behaviour
- e.g. web servers, CI pipelines etc...

- Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)

- Detect deviation from the model
- Several approaches being explored… 
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Example: UNICORN

▪ Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced 
Persistent Threats”, NDSS 2020
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Example: UNICORN

1) Graph streamed in, converted to histogram, labelled using (modified) 
struct2vec 
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Example: UNICORN

2) At regular interval, histogram converted to a fixed size vector using 
similarity preserving graph sketching
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Example: UNICORN

3) Feature vectors are clustered
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Example: UNICORN

4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model
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Relatively simple

▪ Labelled directed acyclic graph
– node/edge types
– security context (when available)

▪ Modification and combination of existing algorithms
– struct2vec
– similarity preserving hashing
– clustering

▪ Right combination + domain knowledge
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How to evaluate?
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Comparison state of the art

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs" 
ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm
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Evaluation with DARPA datasets
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Evaluation with DARPA datasets

SUCH GOOD RESULTS ARE NOT NORMAL
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Building our own dataset

▪ Attack designed to look similar to background activity
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Building our own dataset

▪ Attack designed to look similar to background activity
▪ Is that enough?
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Runtime performance
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Runtime performance
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Runtime performance

Memory usage: ~500MB
CPU usage 15% on 1 core 
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Some insights from this work
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We can build practical provenance-based IDSs

▪ We can detect intrusion out of graph structure with little metadata
– Vertex type (thread, file, socket etc…)
– Edge type (read, write, connect etc…)

▪ Processing speed
– Current prototype
– Data generation speed < processing speed!
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Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?

- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines

- Leads to unsatisfactory evaluation
- I may be able to compare to similar techniques (may reuse dataset)
- … very hard for unrelated one (i.e. ingest different data type)

- Adversarial ML?
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Identifying threats: explainability is a problem

▪ There is a problem within the last batch of X graph elements
– 2,000 in previous figures

▪ Good luck finding out what went wrong
▪ Provenance forensic is an active field of research

– Promising work out of the DARPA programme
▪ … but could we do better during detection?
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Thank you! Questions?
tfjmp.org

camflow.org
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CamFlow capture mechanism
- Leverage existing kernel features whenever possible
- Avoid alteration of existing code
- We therefore build upon:

- Linux Security Module 
- to capture system events
- NetFilter
- to capture network events
- RelayFS 
- to transfer provenance to 

user space
- SecurityFS 
- to provide a userspace 

interface for settings
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Extent of modification
Modifications to the Linux Kernel code
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System Headers C File Total LoC

PASS (v2.6.27) 
pub. 2006

18 69 87 5100

LPM (v2.6.32)
pub. 2015

13 61 74 2294

CamFlow (v5.4.15)
circa 2020

3 0 3 4220



Capture overhead
Micro-benchmark Macro-benchmark

Selective: cost of allocating/freeing provenance “blob” + recording or not decision

Whole: Selective + cost of recording provenance information
51

Sys Call Whole Selective

stat 100% 28%

open/close 80% 18%

fork 6% 2%

exec 3% <1%

Prog. Whole Selective

unpack 2% <1%

build 2% 0%

postmark 11% 6%



IDS performance (more)
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IDS performance (more)
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IDS performance (more)

CPU over long time period? 15% CPU time across cores
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Add a few slides on advanced persistent threats
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