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How to solve this with provenance?

- What is provenance?

- Why use provenance?
How to capture provenance?
How to perform detection?
How to evaluate?
Insights
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System-level provenance graph

- History of a system execution

- Represent interactions between system objects
- Represented as a directed acyclic graph

- Information Flows

- Relationship between kernel object states
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Example provenance (simplified)
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Why use provenance?
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Provenance-based intrusion detection

- Intuition: provenance graph exposes causality relationships
between events
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Provenance-based intrusion detection

- Intuition: provenance graph exposes causality relationships
between events
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Provenance-based intrusion detection

Related events are connected even across long period of time
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Capture methods
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Examples

l.

Balakrishnan et al. "OPUS: A Lightweight
System for Observational Provenance in
User Space" Workshop on the Theory and
Practice of Provenance. 2013
Muniswamy-Reddy et al.
"Provenance-aware storage systems"”
USENIX ATC. 2006.

Pasquier et al. "Practical whole-system
provenance capture" SoCC. 2017
Gehani et al. "SPADE: support for
provenance auditing in distributed
environments" Middleware Conference.
2012
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Why are they not appropriate?
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Interposition is unsafe

=  Watson "Exploiting Concurrency
Vulnerabilities in System Call Wrappers"
WOQOT. 2007

= Time-of-audit-to-time-of-use attack

— Race condition

- Syntactic Race
— different copy of parameters

- Semantic Race
— Kernel state may change
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Capture methods

Examples
o 1. Based on Linux reference monitor
- 2. Bestaccuracy

| | { JRplicivii 3. Stronger formal guarantees

Wy r@? | 4. Formally specified semantic

Y B .- create prov

4 W N 5. Best performance

- |

; - S Pasquier et al. “Runtime Analysis of

Whole-System Provenance”, CCS 2018

Sylem call service routines
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How to perform detection?
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Assumptions (and limitations)

Runtime detection

We target environment with minimal human intervention
- relatively consistent behaviour
- e.g. web servers, Cl pipelines etc...

Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)

Detect deviation from the model
Several approaches being explored...
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» Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced
Persistent Threats”, NDSS 2020
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1) Graph streamed in, converted to histogram, labelled using (modified)

struct2vec
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2) At regular interval, histogram converted to a fixed size vector using
similarity preserving hashing
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Example
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3) Feature vectors are clustered
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4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model
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Relatively simple

Nothing overly fancy here

Labelled directed acyclic graph

— node/edge types

— security context (when available)

Modification and combination of existing algorithms
— struct2vec

— similarity preserving hashing

— clustering

Right combination + domain knowledge
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How to evaluate?
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Comparison state

Experiment Dataset # of Graphs  Avg. |[V|  Avg. |[E|  Preprocessed Data Size (GiB)
YouTube 100 8,292 113,229 0.3

Gmail 100 6,827 37,382 0.1

StreamSpot Download 100 8,831 310,814 1
VGame 100 8,637 112,958 0.4

CNN 100 8,990 294,903 09

Attack 100 8,891 28,423 0.1

TABLE I: Characteristics of the StreamSpot dataset. The dataset is publicly

available only in a preprocessed format.

of the art

Experiment | Precision = Recall =~ Accuracy  F-Score
StreamSpot (baseline) 0.74 N/A 0.66 N/A
R=1 0.51 1.0 0.60 0.68
R =3 0.98 0.93 0.96 0.94

TABLE II: Comparison to StreamSpot on the StreamSpot dataset. We estimate
StreamSpot’s average accuracy and precision from the figure included in the
paper [83], which does not report exact values. They did not report recall or
F-score.

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs"

ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm
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Evaluation with DARPA datasets

Experiment ~ Dataset  # of Graphs  Avg. |V| Avg. |[E|  Raw Data Size (GiB)
DARPA Benign 66 59,983 4,811,836 271
CADETS Attack 8 386,548 5,160,963 38
DARPA Benign 43 2,309 4,199,309 441
ClearScope Attack 51 11,769 4,273,003 432
DARPA Benign 2 19,461 1,913,202 4
THEIA Attack 25 275,822 4,073,621 85

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.
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Experiment | Precision  Recall ~ Accuracy  F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0
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TABLE V: Experimental results of the DARPA datasets.
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Experiment | Precision  Recall ~ Accuracy  F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE V: Experimental results of the DARPA datasets.

SUCH GOOD RESULTS ARE NOT NORMAL
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Building our own dataset

Experiment  Dataset  # of Graphs  Avg. |[V|  Avg. [E|  Raw Data Size (GiB)

Experiment | Precision = Recall ~ Accuracy  F-Score
SC-1 Benign 125 265,424 975,226 64
Attack 25 257,156 957,968 12 SC-1 0.85 0.96 0.90 0.90
S Benign 125 238338 OI1,153 59 SC-2 0.75 0.80 0.77 0.78
g Attack 25 243,658 949,887 12 TABLE VIII: Experimental results of the supply-chain APT attack scenarios.
TABLE VI: Characteristics of the datasets used in the supply-chain APT attack
experiments.

= Attack designed to look similar to background activity

bristol.ac.uk 3



Runtime performance

Fig. 4: Total number of processed edges over time (in seconds) in the SC-1 experimental workload with varying batch sizes (Fig. 4(a)), sketch sizes (Fig. 4(b)),
hop counts (Fig. 4(c)), and intervals of sketch generation (Fig. 4(d)). Dashed blue line represents the speed of graph edges streamed into UNICORN for analysis.
Triangle maroon baseline has the same configurations as those used in our experiments and indicates the values of the controlled parameters (that remain
constant) in each figure.

. F
- osl - /
2
o
3 4
0.6
5 -
&
8 oal il
1%
= - CamFlow
)
g .l - Comflw || ~1 —o— Sketch =300
&) / o— Baich = 1,000 / Sketch = 1,000
7 Buch = 3000 + Sketch = 2000
(’/ . Batch = 6,000 / +— Sketch = 5,000
L] —+— Batch = 10,000 e Sketch = 10,000
(a): Batch (b): Sketch
106
1
~ 08| .
2
8
k=1)
<
o
@ 06 ~
I=}
&
2]
= <~ CamFlow
=3 e
T o CamFlow
o Interval = 500
terval = 1000
o Imeral = 3000
o +— Interval = 5,500
O gp @ 40 0 P @ 10 O 98 ® 6 0 O b 48 ® 3P g 0 O ;98 ® 6 0
Time (seconds) Time (seconds)
(¢): Hop (d): Tnterval
F CPU & Memory Utilization C ion Parameter :aral‘:\clcr Value  Max Mcmn:};“Usagc (MB)

ristol.ac.uk 40



Runtime performance

Fig. 4: Total number of processed edges over time (in seconds) in the SC-1 experimental workload with varying batch sizes (Fig. 4(a)), sketch sizes (Fig. 4(b)),
hop counts (Fig. 4(c)), and intervals of sketch generation (Fig. 4(d)). Dashed blue line represents the speed of graph edges streamed into UNICORN for analysis.
Triangle maroon baseline has the same configurations as those used in our experiments and indicates the values of the controlled parameters (that remain
constant) in each figure.
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Provenance-based IDS work!

We can detect intrusion out of graph structure with little metadata
— Vertex type (thread, file, socket etc...)
— Edge type (read, write, connect etc...)
Processing speed
— Current prototype
— Data generation speed < processing speed!
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Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?
- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines
- Leads to unsatisfactory evaluation

- | may be able to compare to similar techniques (may reuse dataset)
- ... very hard for unrelated one (i.e. ingest different data type)
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Explainability is a problem

There is a problem within the last batch of X graph elements
— 2,000 in previous figures

Good luck finding out what went wrong

Provenance forensic is an active field of research

— Promising work out of the DARPA programme

... but could we do better during detection?

— Promising work with colleagues at NEC Labs America

— Report vertex within 3 nodes of anomaly in 75% of cases!
— Deep graph learning techniques
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What about unpredictable workload?
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Everything has been open-sourced

Capture: http://camflow.org

— Linux package(s) available!

Data management: https://github.com/ashish-gehani/SPADE/wiki

IDS: https://qgithub.com/crimson-unicorn
- Streamspot data: https://github.com/sbustreamspot/sbustreamspot-data
= DARPA data: https://github.com/darpa-i2o/Transparent-Computing

For those really interested (20+ papers on the topic):
- https://github.com/tfimp/provenance-papers
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Thank you,
guestions?
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