
Provenance-based Intrusion Detection
Thomas Pasquier, University of Bristol

UK Cyber Security Winter School, Newcastle, 15/01/2020

1



2



System call based intrusion detection

3

System Calls



System call based intrusion detection

Identify abnormal patterns

System Calls

4



System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions

System Calls

5



System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as bening action

System Calls

6



System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as bening action

Over a long period of time

[...]

[...]

System Calls

7



How to solve this with provenance?

▪ What is provenance?
▪ Why use provenance?
▪ How to capture provenance?
▪ How to perform detection?
▪ How to evaluate?
▪ Insights

8



What is provenance?

9



System-level provenance graph

- History of a system execution
- Represent interactions between system objects
- Represented as a directed acyclic graph
- Information Flows
- Relationship between kernel object states

10



Example provenance (simplified)

P1

11



Example provenance (simplified)

P1 S1
create

12



Example provenance (simplified)

P1

P2

S1

F1

create

read

13



Example provenance (simplified)

P1

P2

S1

S2F1 Pckt

create

read send send

14



Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1 Pckt

Pckt

create

read send send

rcvrcv

15



Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1

F2

Pckt

Pckt

create

read send send

rcvrcvwrite

16



Why use provenance?

17



Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships 
between events

18



Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships 
between events

19



Provenance-based intrusion detection

▪ Related events are connected even across long period of time

20



How to capture provenance?

21



Capture methods

22

Examples
1. Balakrishnan et al. "OPUS: A Lightweight 

System for Observational Provenance in 
User Space" Workshop on the Theory and 
Practice of Provenance. 2013

2. Muniswamy-Reddy et al. 
"Provenance-aware storage systems" 
USENIX ATC. 2006.

3. Pasquier et al. "Practical whole-system 
provenance capture" SoCC. 2017

4. Gehani et al. "SPADE: support for 
provenance auditing in distributed 
environments" Middleware Conference. 
2012



Capture methods

23

Examples
1. Balakrishnan et al. "OPUS: A Lightweight 

System for Observational Provenance in 
User Space" Workshop on the Theory and 
Practice of Provenance. 2013

2. Muniswamy-Reddy et al. 
"Provenance-aware storage systems" 
USENIX ATC. 2006.

3. Pasquier et al. "Practical whole-system 
provenance capture" SoCC. 2017

4. Gehani et al. "SPADE: support for 
provenance auditing in distributed 
environments" Middleware Conference. 
2012



Why are they not appropriate?

24



Interposition is unsafe

▪ Watson "Exploiting Concurrency 
Vulnerabilities in System Call Wrappers" 
WOOT. 2007

▪ Time-of-audit-to-time-of-use attack
– Race condition

▪ Syntactic Race
– different copy of parameters

▪ Semantic Race
– Kernel state may change

25



Capture methods

26

Examples
1. Based on Linux reference monitor
2. Best accuracy
3. Stronger formal guarantees
4. Formally specified semantic
5. Best performance

Pasquier et al. “Runtime Analysis of 
Whole-System Provenance”, CCS 2018



How to perform detection?

27



Assumptions (and limitations)
- Runtime detection
- We target environment with minimal human intervention

- relatively consistent behaviour
- e.g. web servers, CI pipelines etc...

- Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)

- Detect deviation from the model
- Several approaches being explored… 

28



Example

▪ Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced 
Persistent Threats”, NDSS 2020

29



Example

1) Graph streamed in, converted to histogram, labelled using (modified) 
struct2vec 

30



Example

2) At regular interval, histogram converted to a fixed size vector using 
similarity preserving hashing 

31



Example

3) Feature vectors are clustered

32



Example

4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model

33



Relatively simple

▪ Nothing overly fancy here
▪ Labelled directed acyclic graph

– node/edge types
– security context (when available)

▪ Modification and combination of existing algorithms
– struct2vec
– similarity preserving hashing
– clustering

▪ Right combination + domain knowledge

34



How to evaluate?

35



Comparison state of the art

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs" 
ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm

36



Evaluation with DARPA datasets

37



Evaluation with DARPA datasets

SUCH GOOD RESULTS ARE NOT NORMAL

38



Building our own dataset

▪ Attack designed to look similar to background activity

39



Runtime performance

40



Runtime performance

41

Memory usage: ~500MB
CPU usage 15% on 1 core 



Insights

42



Provenance-based IDS work!

▪ We can detect intrusion out of graph structure with little metadata
– Vertex type (thread, file, socket etc…)
– Edge type (read, write, connect etc…)

▪ Processing speed
– Current prototype
– Data generation speed < processing speed!

43



Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?

- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines

- Leads to unsatisfactory evaluation
- I may be able to compare to similar techniques (may reuse dataset)
- … very hard for unrelated one (i.e. ingest different data type)

44



Explainability is a problem

▪ There is a problem within the last batch of X graph elements
– 2,000 in previous figures

▪ Good luck finding out what went wrong
▪ Provenance forensic is an active field of research

– Promising work out of the DARPA programme
▪ … but could we do better during detection?

– Promising work with colleagues at NEC Labs America
– Report vertex within 3 nodes of anomaly in 75% of cases!
– Deep graph learning techniques

45



What about unpredictable workload?

46



Everything has been open-sourced

▪ Capture: http://camflow.org
– Linux package(s) available!

▪ Data management: https://github.com/ashish-gehani/SPADE/wiki
▪ IDS: https://github.com/crimson-unicorn
▪ Streamspot data: https://github.com/sbustreamspot/sbustreamspot-data
▪ DARPA data: https://github.com/darpa-i2o/Transparent-Computing

For those really interested (20+ papers on the topic):
- https://github.com/tfjmp/provenance-papers

47

http://camflow.org
https://github.com/ashish-gehani/SPADE/wiki
https://github.com/crimson-unicorn
https://github.com/sbustreamspot/sbustreamspot-data
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/tfjmp/provenance-papers


Thank you, 
questions?
tfjmp.org
thomas.pasquier@bristol.ac.uk

48

http://tfjmp.org/

