

### Provenance-based Intrusion Detection

1

Thomas Pasquier, University of Bristol

UK Cyber Security Winter School, Newcastle, 15/01/2020

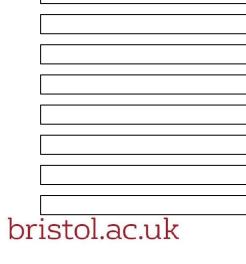


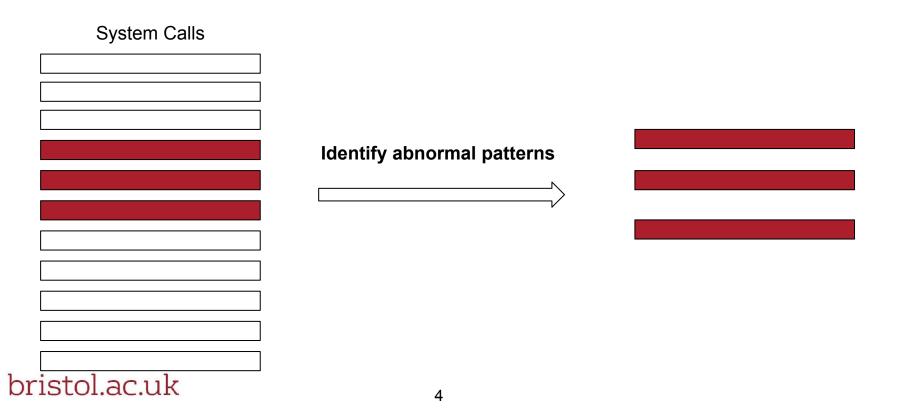


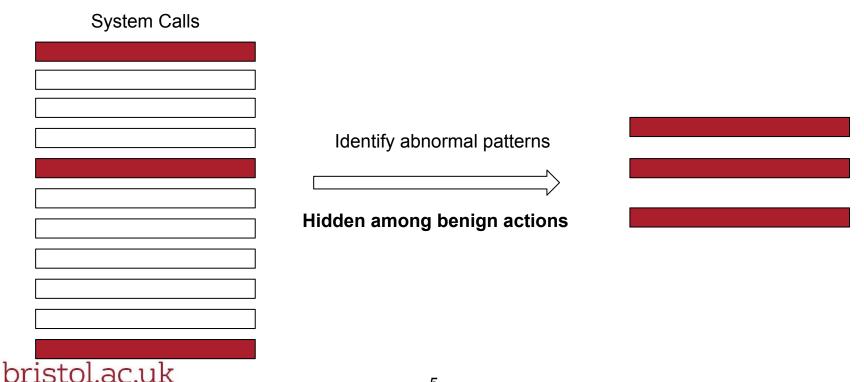




System Calls







# System Calls Identify abnormal patterns Hidden among benign actions Masquerading as bening action

#### System Calls

[...] Identify abnormal patterns Hidden among benign actions Masquerading as bening action [...] Over a long period of time bristol.ac.uk

# How to solve this with provenance?

- What is provenance?
- Why use provenance?
- How to capture provenance?
- How to perform detection?
- How to evaluate?
- Insights



# What is provenance?

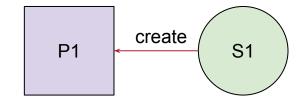
9

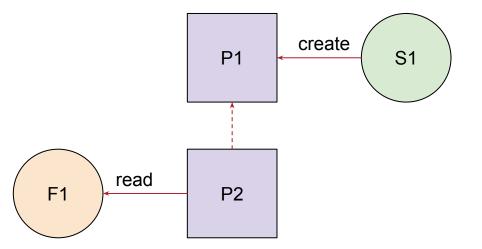


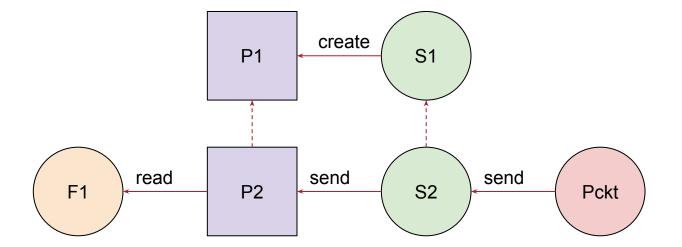
### System-level provenance graph

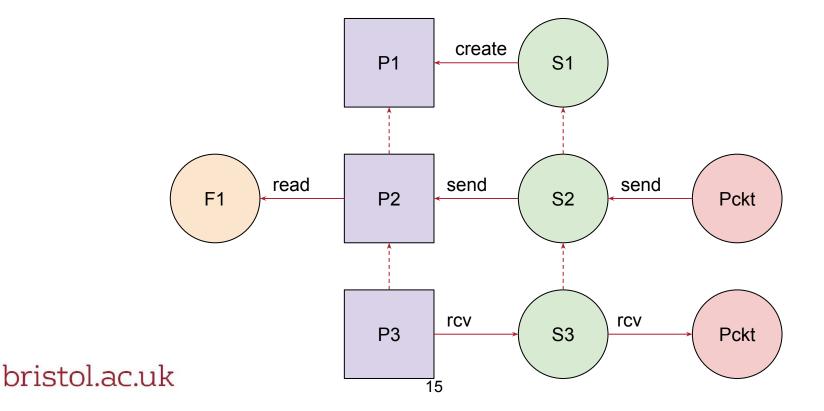
- History of a system execution
- Represent interactions between system objects
- Represented as a directed acyclic graph
- Information Flows
- Relationship between kernel object states

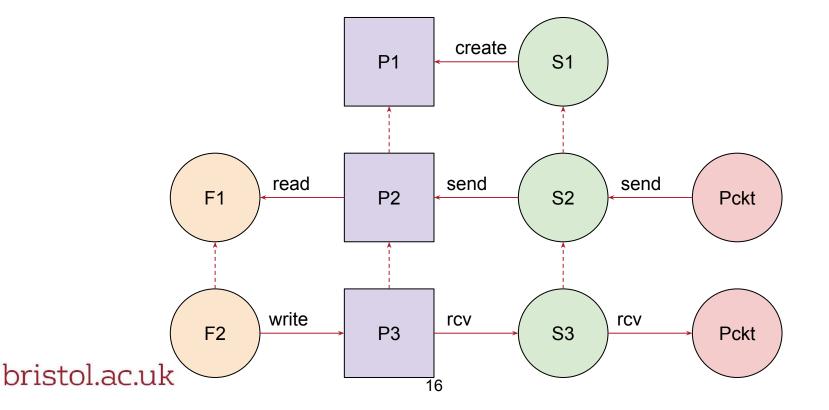














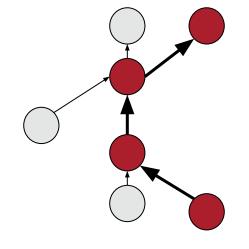
# Why use provenance?





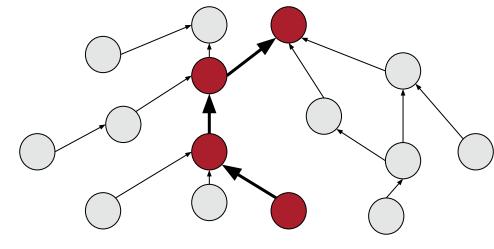
### Provenance-based intrusion detection

 Intuition: provenance graph exposes causality relationships between events



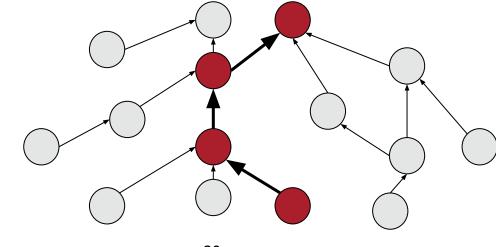
### Provenance-based intrusion detection

 Intuition: provenance graph exposes causality relationships between events



### Provenance-based intrusion detection

- Related events are connected even across long period of time

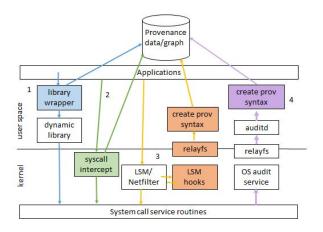




### How to capture provenance?



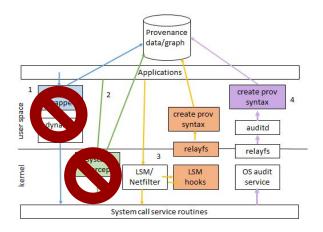
# Capture methods



#### Examples

- 1. Balakrishnan et al. "OPUS: A Lightweight System for Observational Provenance in User Space" Workshop on the Theory and Practice of Provenance. 2013
- 2. Muniswamy-Reddy et al. "Provenance-aware storage systems" USENIX ATC. 2006.
- 3. Pasquier et al. "Practical whole-system provenance capture" *SoCC.* 2017
- Gehani et al. "SPADE: support for provenance auditing in distributed environments" Middleware Conference. 2012

# Capture methods



#### Examples

- 1. Balakrishnan et al. "OPUS: A Lightweight System for Observational Provenance in User Space" Workshop on the Theory and Practice of Provenance. 2013
- 2. Muniswamy-Reddy et al. "Provenance-aware storage systems" USENIX ATC. 2006.
- 3. Pasquier et al. "Practical whole-system provenance capture" *SoCC.* 2017
- Gehani et al. "SPADE: support for provenance auditing in distributed environments" Middleware Conference. 2012

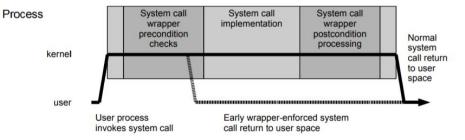


### Why are they not appropriate?



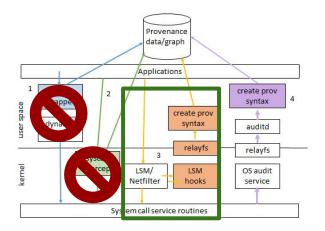
### Interposition is unsafe

 Watson "Exploiting Concurrency Vulnerabilities in System Call Wrappers" WOOT. 2007



- Time-of-audit-to-time-of-use attack
  - Race condition
- Syntactic Race
  - different copy of parameters
- Semantic Race
  - Kernel state may change

# Capture methods



#### Examples

- 1. Based on Linux reference monitor
- 2. Best accuracy
- 3. Stronger formal guarantees
- 4. Formally specified semantic
- 5. Best performance

Pasquier et al. "Runtime Analysis of Whole-System Provenance", CCS 2018



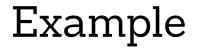
# How to perform detection?

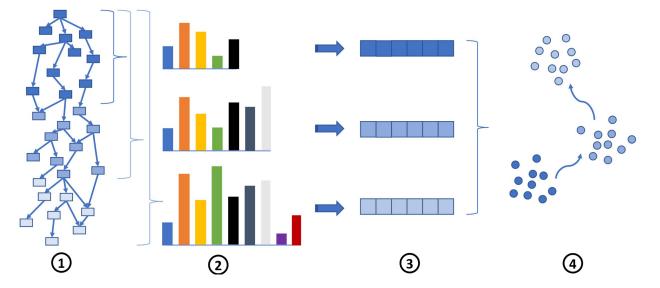


# Assumptions (and limitations)

#### Runtime detection

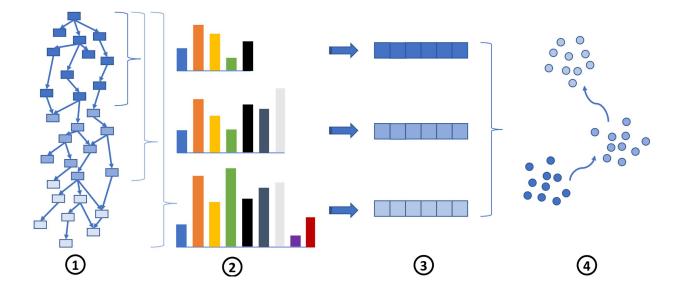
- We target environment with **minimal human intervention** 
  - relatively consistent behaviour
  - e.g. web servers, CI pipelines etc...
- Build a **model of system behaviour** (unsupervised training)
  - in a controlled environment
  - from a representative workload (this is hard!)
- Detect deviation from the model
- Several approaches being explored...





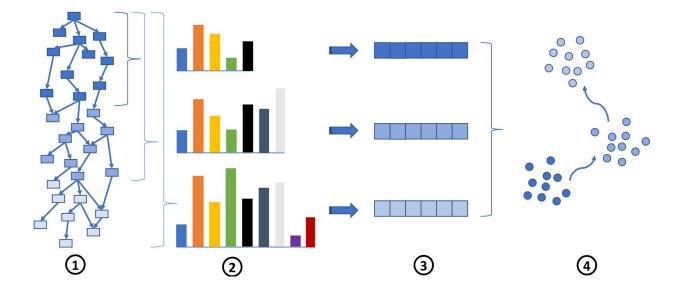
 Han et al. "UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats", NDSS 2020



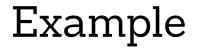


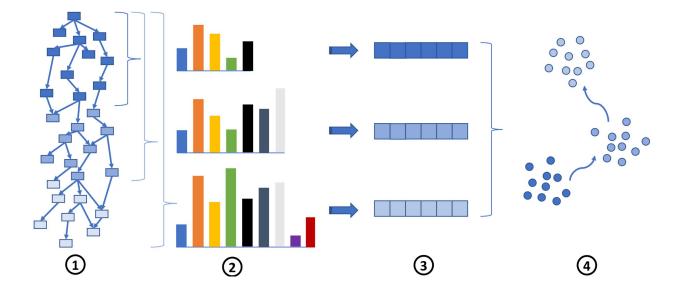
1) Graph streamed in, converted to histogram, labelled using (modified) **struct2vec** 





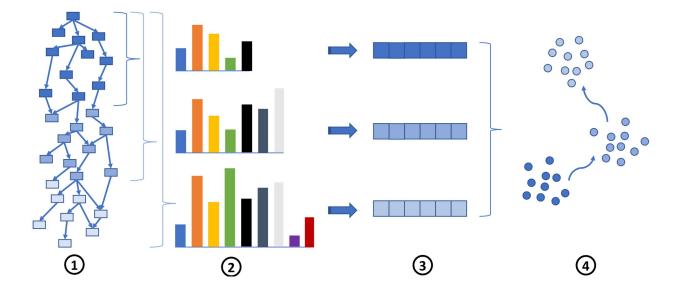
2) At regular interval, histogram converted to a fixed size vector using **similarity preserving hashing** 





3) Feature vectors are **clustered** 





4) Cluster forms "meta-state", transitions are modelledIn deployment, anomaly detected via clustering and "meta-state" model

# Relatively simple

- Nothing overly fancy here
- Labelled directed acyclic graph
  - node/edge types
  - security context (when available)
- Modification and combination of existing algorithms
  - struct2vec
  - similarity preserving hashing
  - clustering
- Right combination + domain knowledge



# How to evaluate?

35



### Comparison state of the art

| Experiment | Dataset  | # of Graphs | Avg.  V | Avg.  E | Preprocessed Data Size (GiB) |
|------------|----------|-------------|---------|---------|------------------------------|
| StreamSpot | YouTube  | 100         | 8,292   | 113,229 | 0.3                          |
|            | Gmail    | 100         | 6,827   | 37,382  | 0.1                          |
|            | Download | 100         | 8,831   | 310,814 | 1                            |
|            | VGame    | 100         | 8,637   | 112,958 | 0.4                          |
|            | CNN      | 100         | 8,990   | 294,903 | 0.9                          |
|            | Attack   | 100         | 8,891   | 28,423  | 0.1                          |

 TABLE I: Characteristics of the StreamSpot dataset. The dataset is publicly available only in a preprocessed format.

| Experiment            | Precision | Recall | Accuracy | F-Score |
|-----------------------|-----------|--------|----------|---------|
| StreamSpot (baseline) | 0.74      | N/A    | 0.66     | N/A     |
| R = 1                 | 0.51      | 1.0    | 0.60     | 0.68    |
| R = 3                 | 0.98      | 0.93   | 0.96     | 0.94    |

TABLE II: Comparison to StreamSpot on the StreamSpot dataset. We estimate StreamSpot's average accuracy and precision from the figure included in the paper [83], which does not report exact values. They did not report recall or F-score.

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs" ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm

#### Evaluation with DARPA datasets

| Experiment | Dataset | # of Graphs | Avg.  V | Avg.  E   | Raw Data Size (GiB) |
|------------|---------|-------------|---------|-----------|---------------------|
| DARPA      | Benign  | 66          | 59,983  | 4,811,836 | 271                 |
| CADETS     | Attack  | 8           | 386,548 | 5,160,963 | 38                  |
| DARPA      | Benign  | 43          | 2,309   | 4,199,309 | 441                 |
| ClearScope | Attack  | 51          | 11,769  | 4,273,003 | 432                 |
| DARPA      | Benign  | 2           | 19,461  | 1,913,202 | 4                   |
| THEIA      | Attack  | 25          | 275,822 | 4,073,621 | 85                  |

| Experiment                                              | Precision | Recall | Accuracy | F-Score |
|---------------------------------------------------------|-----------|--------|----------|---------|
| DARPA CADETS                                            | 0.98      | 1.0    | 0.99     | 0.99    |
| DARPA ClearScope                                        | 0.98      | 1.0    | 0.98     | 0.99    |
| DARPA THEIA                                             | 1.0       | 1.0    | 1.0      | 1.0     |
| TADLE V. Engening antal magnitude of the DADDA datagets |           |        |          |         |

TABLE V: Experimental results of the DARPA datasets.

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

#### Evaluation with DARPA datasets

| Experiment | Dataset | # of Graphs | Avg.  V | Avg.  E   | Raw Data Size (GiB) |
|------------|---------|-------------|---------|-----------|---------------------|
| DARPA      | Benign  | 66          | 59,983  | 4,811,836 | 271                 |
| CADETS     | Attack  | 8           | 386,548 | 5,160,963 | 38                  |
| DARPA      | Benign  | 43          | 2,309   | 4,199,309 | 441                 |
| ClearScope | Attack  | 51          | 11,769  | 4,273,003 | 432                 |
| DARPA      | Benign  | 2           | 19,461  | 1,913,202 | 4                   |
| THEIA      | Attack  | 25          | 275,822 | 4,073,621 | 85                  |

| Experiment       | Precision | Recall | Accuracy | F-Score |  |
|------------------|-----------|--------|----------|---------|--|
| DARPA CADETS     | 0.98      | 1.0    | 0.99     | 0.99    |  |
| DARPA ClearScope | 0.98      | 1.0    | 0.98     | 0.99    |  |
| DARPA THEIA      | 1.0       | 1.0    | 1.0      | 1.0     |  |
|                  |           |        |          |         |  |

TABLE V: Experimental results of the DARPA datasets.

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

#### SUCH GOOD RESULTS ARE NOT NORMAL

## Building our own dataset

| Experiment | Dataset | # of Graphs | Avg.  V | Avg.  E | Raw Data Size (GiB) |
|------------|---------|-------------|---------|---------|---------------------|
| SC-1       | Benign  | 125         | 265,424 | 975,226 | 64                  |
| 3C-1       | Attack  | 25          | 257,156 | 957,968 | 12                  |
| SC-2       | Benign  | 125         | 238,338 | 911,153 | 59                  |
| 50-2       | Attack  | 25          | 243,658 | 949,887 | 12                  |

| Experiment | Precision | Recall | Accuracy | F-Score |
|------------|-----------|--------|----------|---------|
| SC-1       | 0.85      | 0.96   | 0.90     | 0.90    |
| SC-2       | 0.75      | 0.80   | 0.77     | 0.78    |

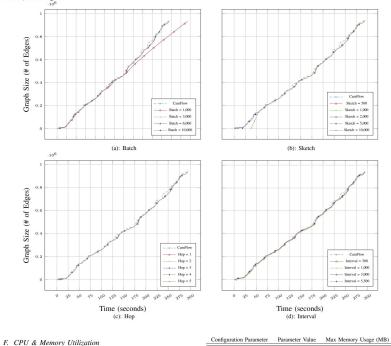
TABLE VIII: Experimental results of the supply-chain APT attack scenarios.

TABLE VI: Characteristics of the datasets used in the supply-chain APT attack experiments.

Attack designed to look similar to background activity

#### Runtime performance

Fig. 4: Total number of processed edges over time (in seconds) in the SC-1 experimental workload with varying batch sizes (Fig. 4(a)), sketch sizes (Fig. 4(b)), hop counts (Fig. 4(c)), and intervals of sketch generation (Fig. 4(d)). Dashed blue line represents the speed of graph edges streamed into UNICORN for analysis. Triangle maroon baseline has the same configurations as those used in our experiments and indicates the values of the controlled parameters (that remain constant) in each figure.



bristol.ac.uk

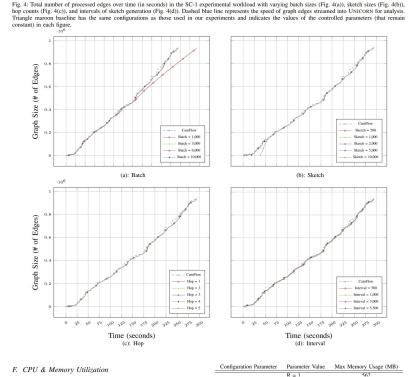
40

R = 1

560

#### Runtime performance

Memory usage: ~500MB CPU usage 15% on 1 core





# Insights



### Provenance-based IDS work!

- We can detect intrusion out of graph structure with little metadata
  - Vertex type (thread, file, socket etc...)
  - Edge type (read, write, connect etc...)
- Processing speed
  - Current prototype
  - Data generation speed < processing speed!</p>

# Proper evaluation is hard!

- Dataset are hard to generate

- What is a good quality dataset?
- Hard to compare across papers, a lot is not available
  - Experiments (i.e. attacks)
  - Capture Mechanisms
  - Analysis pipelines
- Leads to unsatisfactory evaluation
  - I may be able to compare to similar techniques (may reuse dataset)
  - ... very hard for unrelated one (i.e. ingest different data type)

# Explainability is a problem

- There is a problem within the last batch of X graph elements
  - 2,000 in previous figures
- Good luck finding out what went wrong
- Provenance forensic is an active field of research
  - Promising work out of the DARPA programme
- ... but could we do better during detection?
  - Promising work with colleagues at NEC Labs America
  - Report vertex within 3 nodes of anomaly in 75% of cases!
  - Deep graph learning techniques



#### What about unpredictable workload?



# Everything has been open-sourced

- Capture: <u>http://camflow.org</u>
  - Linux package(s) available!
- Data management: <u>https://github.com/ashish-gehani/SPADE/wiki</u>
- IDS: <u>https://github.com/crimson-unicorn</u>
- Streamspot data: <u>https://github.com/sbustreamspot/sbustreamspot-data</u>
- DARPA data: <u>https://github.com/darpa-i2o/Transparent-Computing</u>

For those really interested (20+ papers on the topic):

<u>https://github.com/tfjmp/provenance-papers</u>



# Thank you, questions?

tfjmp.org thomas.pasquier@bristol.ac.uk



