
Efficient Large-Scale Data
Provenance Tracking and

Analyzing: Intrusion Detection
Thomas Pasquier, University of Bristol

Two Sigma, 26/01/2021

1

Motivation: System call based intrusion detection

System Calls

2

Motivation: System call based intrusion detection

Identify abnormal patterns

System Calls

3

Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions

System Calls

4

Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as benign action

System Calls

5

Motivation: System call based intrusion detection

Identify abnormal patterns

Hidden among benign actions
Masquerading as benign action

Over a long period of time

[...]

[...]

System Calls

6

What is provenance?

7

What is provenance?
- From the French “provenir” meaning “coming from”
- Formal set of documents describing the origin of an art piece
- Sequence of

- Formal ownership
- Custody
- Places of storage

- Used for authentication

8

What is data-provenance?
- Represent interactions between objects of different types

- Data-items (entities)
- Processing (activities)
- Individuals and Organisations (agents)

- Represented as a directed acyclic graph (think information flows)
- Edges represent interactions between objects as dependencies
- It is a representation of history

- Immutable (unless it’s 1984)
- No dependency to the future

9

Example provenance (simplified)

P1

10

Example provenance (simplified)

P1 S1
create

11

Example provenance (simplified)

P1

P2

S1

F1

create

read

12

Example provenance (simplified)

P1

P2

S1

S2F1 Pckt

create

read send send

13

Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1 Pckt

Pckt

create

read send send

rcvrcv

14

Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1

F2

Pckt

Pckt

create

read send send

rcvrcvwrite

15

Example provenance (simplified)

P1

P2

P3

S1

S2

S3

F1

F2

Pckt

Pckt

create

read send send

rcvrcvwrite

Linux kernel compilation:
~2M graph elements

16

How is this useful?

17

18

Provenance-based security - Forensic

● Backtracking intrusions, SOSP 2003

19

Provenance-based security

● Provenance-based access control
○ A provenance-based access control model, IEEE PST 2012

● Loss Prevention Scheme
○ *Trustworthy Whole-System Provenance for the Linux Kernel, USENIX Security 2015

● Intrusion Detection
○ FRAPpuccino: fault-detection through runtime analysis of provenance, USENIX HotCloud 2017

● Moving towards complex runtime graph analysis

20

Provenance-based security

● Provenance-based access control
○ A provenance-based access control model, IEEE PST 2012

● Loss Prevention Scheme
○ *Trustworthy Whole-System Provenance for the Linux Kernel, USENIX Security 2015

● Intrusion Detection
○ FRAPpuccino: fault-detection through runtime analysis of provenance, USENIX HotCloud 2017

● Moving towards complex runtime graph analysis
● *overhead is a function of total graph size, a graph which grows

indefinitely
○ 21ms overhead per network packet, on small graphs

Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships
between events

21

Provenance-based intrusion detection

▪ Intuition: provenance graph exposes causality relationships
between events

22

Provenance-based intrusion detection

▪ Related events are connected even across long period of time

23

Concrete example: CI pipeline compromise
Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced
Persistent Threats”, NDSS 2020

● Attacker can control redirection when downloading through vulnerability
○ dependency packages.

● Install version of a tool used in the CI that contains a malware
● Modify the binary being generated during the CI compilation
● Binary is packaged, signed and distributed through legitimate channel

Difficulty:
● Each steps have very little abnormality (very close to normal behaviour)
● Causality is easily lost in complex build process

We continued work (with colleagues at NEC Labs) on malicious, but legitimate
installer/package in:
Han et al. “SIGL: Securing Software Installations Through Deep Graph Learning”, USENIX Security 2021.

24

How do we get the data?

25

Capture methods

Examples
1. Balakrishnan et al. "OPUS: A Lightweight

System for Observational Provenance in
User Space" Workshop on the Theory and
Practice of Provenance. 2013

2. Muniswamy-Reddy et al.
"Provenance-aware storage systems"
USENIX ATC. 2006.

3. Pasquier et al. "Practical whole-system
provenance capture" SoCC. 2017

4. Gehani et al. "SPADE: support for
provenance auditing in distributed
environments" Middleware Conference.
2012

26

Capture methods

Examples
1. Balakrishnan et al. "OPUS: A Lightweight

System for Observational Provenance in
User Space" Workshop on the Theory and
Practice of Provenance. 2013

2. Muniswamy-Reddy et al.
"Provenance-aware storage systems"
USENIX ATC. 2006.

3. Pasquier et al. "Practical whole-system
provenance capture" SoCC. 2017

4. Gehani et al. "SPADE: support for
provenance auditing in distributed
environments" Middleware Conference.
2012

27

Interposition is unsafe

▪ Watson "Exploiting Concurrency
Vulnerabilities in System Call Wrappers"
WOOT. 2007

▪ Time-of-audit-to-time-of-use attack
– Race condition

▪ Syntactic Race
– different copy of parameters

▪ Semantic Race
– Kernel state may change

28

Capture methods

Examples
1. Based on Linux reference monitor
2. Best accuracy
3. Stronger formal guarantees
4. Formally specified semantic
5. Best performance

Pasquier et al. “Runtime Analysis of
Whole-System Provenance”, CCS 2018

29

How do we process the data?

30

The problem

31

● We are build extremely large streaming graphs.
● As said earlier, previous solutions detection = f(size) …
● … won’t work in a runtime/streaming setting

The problem

32

● We are build extremely large streaming graphs.
● As said earlier, previous solutions detection = f(size) …
● … won’t work in a runtime/streaming setting

Pasquier et al. “Runtime Analysis of Whole-System Provenance”, CCS 2018

The solution
● Understand the properties of the graph (directed acyclic)
● Understand the semantic of the graph (OS execution)
● Understand the properties of the computation

○ Most can be translated as value propagation (e.g. to build feature vectors based on neighborhood)

Concretely in the implementation:

● Provide order guarantee
○ e.g. all incoming edge before outgoing, partial orders along paths etc.
○ Help with processing and garbage collection

● Use semantic for garbage collection
○ It is clear when nodes won’t be referenced again (e.g. inodes after free)

● Framework to write “query” based on value propagation
● In-kernel or userspace (same code)

○ Low level language, DSL would probably be better
33

How do we check we’ve done this properly?
● Static analysis of kernel + provenance capture instrumentation

○ Verify system calls semantic (manual)
○ Verify ordering

●

34

How to perform detection?

35

Assumptions (and limitations)
- Runtime detection
- We target environment with minimal human intervention

- relatively consistent behaviour
- e.g. web servers, CI pipelines etc...

- Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)

- Detect deviation from the model
- Several approaches being explored…

36

Example: UNICORN

▪ Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced
Persistent Threats”, NDSS 2020

37

Example: UNICORN

1) Graph streamed in, converted to histogram, labelled using (modified)
struct2vec

38

Example: UNICORN

2) At regular interval, histogram converted to a fixed size vector using
similarity preserving graph sketching

39

Example: UNICORN

3) Feature vectors are clustered

40

Example: UNICORN

4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model

41

Relatively simple

▪ Labelled directed acyclic graph
– node/edge types
– security context (when available)

▪ Modification and combination of existing algorithms
– struct2vec
– similarity preserving hashing
– clustering

▪ Right combination + domain knowledge

42

How to evaluate?

43

Comparison state of the art

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs"
ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm

44

Evaluation with DARPA datasets

45

Evaluation with DARPA datasets

SUCH GOOD RESULTS ARE NOT NORMAL

46

Building our own dataset

▪ Attack designed to look similar to background activity
▪ Is that enough?

47

Building our own dataset

▪ Attack designed to look similar to background activity

48

Parameter Influence on detection performance

49

Processing Speed (overview)

50

Processing Speed (detail)

51

CPU and memory usage

52

Long term CPU usage

CPU over long time period? 15% CPU time across cores

53

Some insights from this work

54

We can build practical provenance-based IDSs

▪ We can detect intrusion out of graph structure with little metadata
– Vertex type (thread, file, socket etc…)
– Edge type (read, write, connect etc…)

▪ Processing speed
– Current prototype
– Data generation speed < processing speed!

55

Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?

- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines

- Leads to unsatisfactory evaluation
- I may be able to compare to similar techniques (may reuse dataset)
- … very hard for unrelated one (i.e. ingest different data type)

- Adversarial ML?
56

Identifying threats: explainability is a problem

▪ There is a problem within the last batch of X graph elements
– 2,000 in previous figures

▪ Good luck finding out what went wrong
▪ Provenance forensic is an active field of research

– Promising work out of the DARPA programme
▪ … but could we do better during detection?

57

Other approaches?

58

Does my system do what I think it should?

59

Pasquier et al. “Data provenance to audit compliance with privacy policy in the Internet of Things”, Personal and Ubiquitous Computing, 2017

Some move in that direction (sort-ish)

Milajerdi, Sadegh M., et al. "HOLMES: real-time APT detection through correlation of suspicious information flows." IEEE S&P 2019.

60

Can we get there?

61

Thank you! Questions?
tfjmp.org

62

CamFlow capture mechanism
- Leverage existing kernel features whenever possible
- Avoid alteration of existing code
- We therefore build upon:

- Linux Security Module
- to capture system events
- NetFilter
- to capture network events
- RelayFS
- to transfer provenance to

user space
- SecurityFS
- to provide a userspace

interface for settings

63

Extent of modification
Modifications to the Linux Kernel code

64

System Headers C File Total LoC

PASS (v2.6.27)
pub. 2006

18 69 87 5100

LPM (v2.6.32)
pub. 2015

13 61 74 2294

CamFlow (v5.4.15)
circa 2020

3 0 3 4220

Capture overhead
Micro-benchmark Macro-benchmark

Selective: cost of allocating/freeing provenance “blob” + recording or not decision

Whole: Selective + cost of recording provenance information
65

Sys Call Whole Selective

stat 100% 28%

open/close 80% 18%

fork 6% 2%

exec 3% <1%

Prog. Whole Selective

unpack 2% <1%

build 2% 0%

postmark 11% 6%

Add a few slides on advanced persistent threats

66

