Efficient Large-Scale Data Provenance Tracking and Analyzing: Intrusion Detection

Thomas Pasquier, University of Bristol Two Sigma, 26/01/2021

System Calls

System Calls Identify abnormal patterns Hidden among benign actions Masquerading as benign action

System Calls

[...] Identify abnormal patterns Hidden among benign actions Masquerading as benign action [...] Over a long period of time

What is provenance?

What is provenance?

- From the French "provenir" meaning "coming from"
- Formal set of documents describing the origin of an art piece
- Sequence of
 - Formal ownership
 - Custody
 - Places of storage
- Used for authentication

What is data-provenance?

- Represent interactions between objects of different types
 - Data-items (entities)
 - Processing (activities)
 - Individuals and Organisations (agents)
- Represented as a **directed acyclic graph** (think information flows)
- Edges represent interactions between objects as dependencies
- It is a representation of history
 - Immutable (unless it's 1984)
 - No dependency to the future

How is this useful?

Provenance-based security - Forensic

• Backtracking intrusions, SOSP 2003

Provenance-based security

- Provenance-based access control
 - A provenance-based access control model, IEEE PST 2012
- Loss Prevention Scheme
 - *Trustworthy Whole-System Provenance for the Linux Kernel, USENIX Security 2015
- Intrusion Detection
 - FRAPpuccino: fault-detection through runtime analysis of provenance, USENIX HotCloud 2017
- Moving towards complex runtime graph analysis

Provenance-based security

- Provenance-based access control
 - A provenance-based access control model, IEEE PST 2012
- Loss Prevention Scheme
 - *Trustworthy Whole-System Provenance for the Linux Kernel, USENIX Security 2015
- Intrusion Detection
 - FRAPpuccino: fault-detection through runtime analysis of provenance, USENIX HotCloud 2017
- Moving towards complex runtime graph analysis
- *overhead is a function of total graph size, a graph which grows indefinitely
 - 21ms overhead per network packet, on small graphs

Provenance-based intrusion detection

 Intuition: provenance graph exposes causality relationships between events

Provenance-based intrusion detection

 Intuition: provenance graph exposes causality relationships between events

Provenance-based intrusion detection

- Related events are connected even across long period of time

Concrete example: CI pipeline compromise

Han et al. "UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats", NDSS 2020

- Attacker can control redirection when downloading through vulnerability

 dependency packages.
- Install version of a tool used in the CI that contains a malware
- Modify the binary being generated during the CI compilation
- Binary is packaged, signed and distributed through legitimate channel

Difficulty:

- Each steps have very little abnormality (very close to normal behaviour)
- Causality is easily lost in complex build process

We continued work (with colleagues at NEC Labs) on malicious, but legitimate installer/package in:

Han et al. "SIGL: Securing Software Installations Through Deep Graph Learning", USENIX Security 2021.

How do we get the data?

Capture methods

Examples

- 1. Balakrishnan et al. "OPUS: A Lightweight System for Observational Provenance in User Space" Workshop on the Theory and Practice of Provenance. 2013
- 2. Muniswamy-Reddy et al. "Provenance-aware storage systems" USENIX ATC. 2006.
- 3. Pasquier et al. "Practical whole-system provenance capture" SoCC. 2017
- Gehani et al. "SPADE: support for provenance auditing in distributed environments" Middleware Conference. 2012

Capture methods

Examples

- 1. Balakrish and al. "OPUS of Lightweight System for the sel Provenance in User Space" Workshop on the Theory and Practice of Provenance. 2013
- 2. Muniswamy-Reddy et al. "Provenance coge systems" USENIX 2006.
- 3. Pasquier et al. "Practical whole-system provenance capture" SoCC. 2017
- 4. Gehani et al. "SPADE: support for provenance auditing in distributed environments" Middleware Conference. 2012

Interposition is unsafe

 Watson "Exploiting Concurrency Vulnerabilities in System Call Wrappers" WOOT. 2007

Time-of-audit-to-time-of-use attack

- Race condition
- Syntactic Race
 - different copy of parameters
- Semantic Race
 - Kernel state may change

Capture methods

Examples

- 1. Based on Linux reference monitor
- 2. Best accuracy
- 3. Stronger formal guarantees
- 4. Formally specified semantic
- 5. Best performance

Pasquier et al. "Runtime Analysis of Whole-System Provenance", CCS 2018

How do we process the data?

The problem

- We are build extremely large streaming graphs.
- As said earlier, previous solutions detection = f(size) ...
- ... won't work in a runtime/streaming setting

The problem

- We are build extremely large streaming graphs.
- As said earlier, previous solutions detection = f(size) ...
- ... won't work in a runtime/streaming setting

Pasquier et al. "Runtime Analysis of Whole-System Provenance", CCS 2018

The solution

- Understand the properties of the graph (directed acyclic)
- Understand the semantic of the graph (OS execution)
- Understand the properties of the computation
 - Most can be translated as value propagation (e.g. to build feature vectors based on neighborhood)

Concretely in the implementation:

- Provide order guarantee
 - e.g. all incoming edge before outgoing, partial orders along paths etc.
 - Help with processing and garbage collection
- Use semantic for garbage collection
 - It is clear when nodes won't be referenced again (e.g. inodes after free)
- Framework to write "query" based on value propagation
- In-kernel or userspace (same code)
 - Low level language, DSL would probably be better

How do we check we've done this properly?

- Static analysis of kernel + provenance capture instrumentation
 - Verify system calls semantic (manual)
 - Verify ordering

Figure 5: A whole-system provenance subgraph representing a valid instance of the model shown in Fig. 4.

Figure 4: Provenance model for the inode_post_setxattr hook.

How to perform detection?

Assumptions (and limitations)

Runtime detection

- We target environment with minimal human intervention
 - relatively consistent behaviour
 - e.g. web servers, CI pipelines etc...
- Build a model of system behaviour (unsupervised training)
 - in a controlled environment
 - from a representative workload (this is hard!)
- Detect deviation from the model
- Several approaches being explored...

 Han et al. "UNICORN: Runtime Provenance-Based Detector for Advanced Persistent Threats", NDSS 2020

1) Graph streamed in, converted to histogram, labelled using (modified) **struct2vec**

2) At regular interval, histogram converted to a fixed size vector using **similarity preserving graph sketching**

3) Feature vectors are **clustered**

4) Cluster forms "meta-state", transitions are modelledIn deployment, anomaly detected via clustering and "meta-state" model

Relatively simple

- Labelled directed acyclic graph
 - node/edge types
 - security context (when available)
- Modification and combination of existing algorithms
 - struct2vec
 - similarity preserving hashing
 - clustering
- Right combination + domain knowledge

How to evaluate?

Comparison state of the art

Experiment	Dataset	# of Graphs	Avg. V	Avg. E	Preprocessed Data Size (GiB)
	YouTube	100	8,292	113,229	0.3
	Gmail	100	6,827	37,382	0.1
C	Download	100	8,831	310,814	1
sucanispot	VGame	100	8,637	112,958	0.4
	CNN	100	8,990	294,903	0.9
	Attack	100	8,891	28,423	0.1

TABLE I: Characteristics of the StreamSpot dataset. The dataset is publicly available only in a preprocessed format.

Experiment	Precision	Recall	Accuracy	F-Score
StreamSpot (baseline)	0.74	N/A	0.66	N/A
R = 1	0.51	1.0	0.60	0.68
R = 3	0.98	0.93	0.96	0.94

TABLE II: Comparison to StreamSpot on the StreamSpot dataset. We estimate StreamSpot's average accuracy and precision from the figure included in the paper [83], which does not report exact values. They did not report recall or F-score.

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs" ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm

Evaluation with DARPA datasets

Experiment	Dataset	# of Graphs	Avg. V	Avg. E	Raw Data Size (GiB)
DARPA	Benign	66	59,983	4,811,836	271
CADETS	Attack	8	386,548	5,160,963	38
DARPA	Benign	43	2,309	4,199,309	441
ClearScope	Attack	51	11,769	4,273,003	432
DARPA	Benign	2	19,461	1,913,202	4
THEIA	Attack	25	275,822	4,073,621	85

Experiment	Precision	Recall	Accuracy	F-Score
DARPA CADETS	0.98	1.0	0.99	0.99
DARPA ClearScope	0.98	1.0	0.98	0.99
DARPA THEIA	1.0	1.0	1.0	1.0
	• • •	1. 0.1		

TABLE V: Experimental results of the DARPA datasets.

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

Evaluation with DARPA datasets

Experiment	Dataset	# of Graphs	Avg. V	Avg. E	Raw Data Size (GiB)
DARPA	Benign	66	59,983	4,811,836	271
CADETS	Attack	8	386,548	5,160,963	38
DARPA	Benign	43	2,309	4,199,309	441
ClearScope	Attack	51	11,769	4,273,003	432
DARPA	Benign	2	19,461	1,913,202	4
THEIA	Attack	25	275,822	4,073,621	85

Experiment	Precision	Recall	Accuracy	F-Score
DARPA CADETS	0.98	1.0	0.99	0.99
DARPA ClearScope	0.98	1.0	0.98	0.99
DARPA THEIA	1.0	1.0	1.0	1.0
		1. 0.1	DIDDI 1	

TABLE V: Experimental results of the DARPA datasets.

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

SUCH GOOD RESULTS ARE NOT NORMAL

Building our own dataset

Experiment	Dataset	# of Graphs	Avg. V	Avg. E	Raw Data Size (GiB)
	Benign	125	265,424	975,226	64
SC-1	Attack	25	257,156	957,968	12
	Benign	125	238,338	911,153	59
SC-2	Attack	25	243,658	949,887	12

Experiment	Precision	Recall	Accuracy	F-Score
SC-1	0.85	0.96	0.90	0.90
SC-2	0.75	0.80	0.77	0.78

TABLE VIII: Experimental results of the supply-chain APT attack scenarios.

TABLE VI: Characteristics of the datasets used in the supply-chain APT attack experiments.

Attack designed to look similar to background activity

Is that enough?

Building our own dataset

Experiment	Dataset	# of Graphs	Avg. V	Avg. E	Raw Data Size (GiB)
	Benign	125	265,424	975,226	64
SC-1	Attack	25	257,156	957,968	12
	Benign	125	238,338	911,153	59
SC-2	Attack	25	243,658	949,887	12

Experiment	Precision	Recall	Accuracy	F-Score
SC-1	0.85	0.96	0.90	0.90
SC-2	0.75	0.80	0.77	0.78

TABLE VIII: Experimental results of the supply-chain APT attack scenarios.

TABLE VI: Characteristics of the datasets used in the supply-chain APT attack experiments.

Attack designed to look similar to background activity

Parameter Influence on detection performance

(a) Hop

(c) Interval

(d) Decay

Figure 4: Detection performance (precision, recall, accuracy, and F-score) with varying hop counts (Fig. 4a), sketch sizes (Fig. 4b), intervals of sketch generation (Fig. 4c), and decay factor (Fig. 4d). Baseline values (*) are used by the controlled parameters (that remain constant) in each figure.

Processing Speed (overview)

F. CPU & Memory Utilization

R = 1

560

Processing Speed (detail)

CPU and memory usage

Configuration Parameter	Parameter Value	Max Memory Usage (MB)
	R = 1	562
Hop	R = 2	624
Count	R = 3	687
Count	R = 4	749
	R = 5	812
	S = 500	312
Skatab	S = 1,000	437
Sketch	S = 2,000	687
Size	S = 5,000	1,374
	S = 10,000	2,498

Table 5: Memory usage with varying hop counts and sketch sizes.

Figure 6: Per virtual CPU and average CPU utilization.

Long term CPU usage

CPU over long time period? 15% CPU time across cores

Figure 5: Average CPU utilization with the baseline configurations.

Some insights from this work

We can build practical provenance-based IDSs

- We can detect intrusion out of graph structure with little metadata
 - Vertex type (thread, file, socket etc...)
 - Edge type (read, write, connect etc...)
- Processing speed
 - Current prototype
 - Data generation speed < processing speed!</p>

Proper evaluation is hard!

- Dataset are hard to generate

- What is a good quality dataset?
- Hard to compare across papers, a lot is not available
 - Experiments (i.e. attacks)
 - Capture Mechanisms
 - Analysis pipelines
- Leads to unsatisfactory evaluation
 - I may be able to compare to similar techniques (may reuse dataset)
 - ... very hard for unrelated one (i.e. ingest different data type)
- Adversarial ML?

Identifying threats: explainability is a problem

- There is a problem within the last batch of X graph elements
 - 2,000 in previous figures
- Good luck finding out what went wrong
- Provenance forensic is an active field of research
 - Promising work out of the DARPA programme
- ... but could we do better during detection?

Other approaches?

Does my system do what I think it should?

Pasquier et al. "Data provenance to audit compliance with privacy policy in the Internet of Things", Personal and Ubiquitous Computing, 2017

Some move in that direction (sort-ish)

Milajerdi, Sadegh M., et al. "HOLMES: real-time APT detection through correlation of suspicious information flows." IEEE S&P 2019.

Can we get there?

Thank you! Questions?

tfjmp.org

CamFlow capture mechanism

- Leverage existing kernel features whenever possible
- Avoid alteration of existing code
- We therefore build upon:
 - Linux Security Module
 - to capture system events
 - NetFilter
 - to capture network events
 - RelayFS
 - to transfer provenance to user space
 - SecurityFS
 - to provide a userspace interface for settings

Extent of modification

Modifications to the Linux Kernel code

System	Headers	C File	Total	LoC
PASS (v2.6.27) pub. 2006	18	69	87	5100
LPM (v2.6.32) pub. 2015	13	61	74	2294
CamFlow (v5.4.15) circa 2020	3	0	3	4220

Capture overhead

Micro-benchmark

Macro-benchmark

Sys Call	Whole	Selective
stat	100%	28%
open/close	80%	18%
fork	6%	2%
exec	3%	<1%

Prog.	Whole	Selective
unpack	2%	<1%
build	2%	0%
postmark	11%	6%

Selective: cost of allocating/freeing provenance "blob" + recording or not decision

Whole: Selective + cost of recording provenance information

Advanced Persistent Threats

