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What is provenance?



What is provenance?

- From the French “provenir’” meaning “coming from”
- Formal set of documents describing the origin of an art piece

- Sequence of .

- Formal ownership
- Custody
- Places of storage

- Used for authentication




What is data-provenance?

Represent interactions between objects of different types
Data-items (entities)
Processing (activities)
Individuals and Organisations (agents)

Represented as a directed acyclic graph (think information flows)
Edges represent interactions between objects as dependencies

It is a representation of history
Immutable (unless it's 1984)
No dependency to the future
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Example provenance (simplified)

Linux kernel compilation:

~2M graph elements
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How is this useful?



Provenance-based security - Forensic

e Backtracking intrusions, SOSP 2003
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Provenance-based security

e Provenance-based access control

O A provenance-based access control model, IEEE PST 2012

e Loss Prevention Scheme
o *Trustworthy Whole-System Provenance for the Linux Kernel, USENIX Security 2015

e Intrusion Detection
o FRAPpuccino: fault-detection through runtime analysis of provenance, USENIX HotCloud 2017

e Moving towards complex runtime graph analysis
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Provenance-based security

e Provenance-based access control

O A provenance-based access control model, IEEE PST 2012

e Loss Prevention Scheme
o *Trustworthy Whole-System Provenance for the Linux Kernel, USENIX Security 2015

e Intrusion Detection
o FRAPpuccino: fault-detection through runtime analysis of provenance, USENIX HotCloud 2017

e Moving towards complex runtime graph analysis

e *overhead is a function of total graph size, a graph which grows
indefinitely
o 21ms overhead per network packet, on small graphs
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Provenance-based intrusion detection

- Intuition: provenance graph exposes causality relationships
between events
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- Intuition: provenance graph exposes causality relationships
between events
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Provenance-based intrusion detection

Related events are connected even across long period of time
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Concrete example: Cl pipeline compromise

Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced
Persistent Threats”, NDSS 2020

e Attacker can control redirection when downloading through vulnerability
o dependency packages.

e Install version of a tool used in the CI that contains a malware

Modify the binary being generated during the CI compilation

e Binary is packaged, signed and distributed through legitimate channel

Difficulty:
e Each steps have very little abnormality (very close to normal behaviour)
e Causality is easily lost in complex build process

We continued work (with colleagues at NEC Labs) on malicious, but legitimate

installer/package in:
Han et al. “SIGL: Securing Software Installations Through Deep Graph Learning”, USENIX Security 2021.
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How do we get the data?



Capture methods

Provenance
_»| data/graph
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| s /Applications
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g wrapper “ / syntax 4
- ] ’ / create prov
wn 3 /
§ dynamlc [ syntax auditd
5 library |
Bl
r— relayfs -relayfs
syscall
g intercept LSm/ LSM 0S audit
el ‘ ‘ Netfilter hooks service

Systemcall service routines

Examples

Balakrishnan et al. "OPUS: A Lightweight
System for Observational Provenance in
User Space" Workshop on the Theory and
Practice of Provenance. 2013
Muniswamy-Reddy et al.
"Provenance-aware storage systems"”
USENIX ATC. 2006.

Pasquier et al. "Practical whole-system
provenance capture" SoCC. 2017

Gehani et al. "SPADE: support for
provenance auditing in distributed
environments" Middleware Conference.
2012
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Capture methods
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Interposition is unsafe

Process

=  Watson "Exploiting Concurrency
Vulnerabilities in System Call Wrappers"
WOQOT. 2007

kernel

user

- Time-of-audit-to-time-of-use attack
— Race condition

- Syntactic Race
— different copy of parameters

- Semantic Race
— Kernel state may change

System call
wrapper
precondition
checks

System call
implementation

System call
wrapper
postcondition
processing

User process
invokes system call

Normal
system
call return
to user
space

Early wrapper-enforced system
call return to user space

>
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Capture methods

Provenance
/ data/graph

'/Applications

user space

create prov
syntax

create prov
syntax

—

kernel

I
3 relayfs

Lsm/ LSM
Netfilter hooks

0S audit
service

Sylem call service routines

Examples
1. Based on Linux reference monitor
2. Best accuracy
3. Stronger formal guarantees
4. Formally specified semantic
5. Best performance

Pasquier et al. “Runtime Analysis of
Whole-System Provenance”, CCS 2018
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How do we process the data?



The problem

e We are build extremely large streaming graphs.
e As said earlier, previous solutions detection = f(size) ...
e ... won’t work in a runtime/streaming setting
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e We are build extremely large streaming graphs.
e As said earlier, previous solutions detection = f(size) ...
e ... won’t work in a runtime/streaming setting

Pasquier et al. “Runtime Analysis of Whole-System Provenance”, CCS 2018
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The solution

e Understand the properties of the graph (directed acyclic)
e Understand the semantic of the graph (OS execution)

e Understand the properties of the computation
o  Most can be translated as value propagation (e.g. to build feature vectors based on neighborhood)

Concretely in the implementation:

e Provide order guarantee

o e.g.all incoming edge before outgoing, partial orders along paths etc.
o  Help with processing and garbage collection

e Use semantic for garbage collection
o ltis clear when nodes won’t be referenced again (e.g. inodes after free)

e Framework to write “query” based on value propagation

e In-kernel or userspace (same code)
o  Low level language, DSL would probably be better
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How do we check we've done this properly?

e Static analysis of kernel + provenance capture instrumentation
o Verify system calls semantic (manual)
o Verify ordering

B

memory_read set_xattr setxattr_inode

Figure 5: A whole-system provenance subgraph represent-
ing a valid instance of the model shown in Fig. 4.

Figure 4: Provenance model for the inode_post_setxattr
hook.
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How to perform detection?



Assumptions (and limitations)

Runtime detection
We target environment with minimal human intervention
- relatively consistent behaviour
- e.g. web servers, Cl pipelines etc...
Build a model of system behaviour (unsupervised training)
- in a controlled environment
- from a representative workload (this is hard!)
Detect deviation from the model

Several approaches being explored...
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Example: UNICORN
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» Han et al. “UNICORN: Runtime Provenance-Based Detector for Advanced
Persistent Threats”, NDSS 2020



Example: UNICORN
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1) Graph streamed in, converted to histogram, labelled using (modified)
struct2vec
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Example: UNICORN

= [([I111] ®oo o
o s02°
Yoo~
O...
I ) O
©) @

2) At regular interval, histogram converted to a fixed size vector using
similarity preserving graph sketching
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Example: UNICORN
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3) Feature vectors are clustered
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4) Cluster forms “meta-state”, transitions are modelled
In deployment, anomaly detected via clustering and “meta-state” model
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Relatively simple

Labelled directed acyclic graph

— node/edge types

— security context (when available)

Modification and combination of existing algorithms
— struct2vec

— similarity preserving hashing

— clustering

Right combination + domain knowledge
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How to evaluate?
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Comparison state

Experiment Dataset # of Graphs  Avg. |[V|  Avg. |[E|  Preprocessed Data Size (GiB)
YouTube 100 8,292 113,229 0.3

Gmail 100 6,827 37,382 0.1

StreamSpot Download 100 8,831 310,814 1
VGame 100 8,637 112,958 0.4

CNN 100 8,990 294,903 09

Attack 100 8,891 28,423 0.1

TABLE I: Characteristics of the StreamSpot dataset. The dataset is publicly

available only in a preprocessed format.

of the art

Experiment | Precision = Recall =~ Accuracy  F-Score
StreamSpot (baseline) 0.74 N/A 0.66 N/A
R=1 0.51 1.0 0.60 0.68
R =3 0.98 0.93 0.96 0.94

TABLE II: Comparison to StreamSpot on the StreamSpot dataset. We estimate
StreamSpot’s average accuracy and precision from the figure included in the
paper [83], which does not report exact values. They did not report recall or
F-score.

Manzoor et al. "Fast memory-efficient anomaly detection in streaming heterogeneous graphs"

ACM KDD, 2016.

R -> neighborhood size for struct2vec algorithm
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Evaluation with DARPA datasets

Experiment ~ Dataset  # of Graphs  Avg. |V| Avg. |[E|  Raw Data Size (GiB)
DARPA Benign 66 59,983 4,811,836 271
CADETS Attack 8 386,548 5,160,963 38
DARPA Benign 43 2,309 4,199,309 441
ClearScope Attack 51 11,769 4,273,003 432
DARPA Benign 2 19,461 1,913,202 4
THEIA Attack 25 275,822 4,073,621 85

Experiment | Precision  Recall ~ Accuracy  F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

TABLE V: Experimental results of the DARPA datasets.
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Experiment | Precision  Recall ~ Accuracy  F-Score
DARPA CADETS 0.98 1.0 0.99 0.99
DARPA ClearScope 0.98 1.0 0.98 0.99
DARPA THEIA 1.0 1.0 1.0 1.0

TABLE IV: Characteristics of graph datasets used in the DARPA experiments.

TABLE V: Experimental results of the DARPA datasets.

SUCH GOOD RESULTS ARE NOT NORMAL
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Building our own dataset

Experiment  Dataset  # of Graphs  Avg. |[V|  Avg. [E|  Raw Data Size (GiB)

Experiment | Precision = Recall ~ Accuracy  F-Score
SC-1 Benign 125 265,424 975,226 64
Attack 25 257,156 957,968 12 SC-1 0.85 0.96 0.90 0.90
S Benign 125 238338 OI1,153 59 SC-2 0.75 0.80 0.77 0.78
g Attack 25 243,658 949,887 12 TABLE VIII: Experimental results of the supply-chain APT attack scenarios.
TABLE VI: Characteristics of the datasets used in the supply-chain APT attack
experiments.

= Attack designed to look similar to background activity
= |s that enough?
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Parameter Influence on detection performance

Rate
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Figure 4: Detection performance (precision, recall, accuracy, and F-score) with varying hop counts (Fig. 4a), sketch sizes (Fig. 4b), intervals of
sketch generation (Fig. 4c), and decay factor (Fig. 4d). Baseline values (*) are used by the controlled parameters (that remain constant) in each

figure.
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Processing Speed (overview

Fig. 4: Total number of processed edges over time (in seconds) in the SC-1 experimental workload with varying batch sizes (Fig. 4(a)), sketch sizes (Fig. 4(b)),
hop counts (Fig. 4(c)), and intervals of sketch generation (Fig. 4(d)). Dashed blue line represents the speed of graph edges streamed into UNICORN for analysis.
Triangle maroon baseline has the same configurations as those used in our experiments and indicates the values of the controlled parameters (that remain
constant) in each figure.
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Processing Speed (detail)
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CPU and memory usage

100 IF
. -
Configuration Parameter Parameter Value Max Memory Usage (MB) B O T s e
80 1 ‘eeem ,_‘;-..-'m
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Table 5: Memory usage with varying hop counts and sketch sizes. Time (seconds)

«  Average CPU VCPUO = VCPU1 % VvCPU2 e VCPU3 ® VCPU4 e VCPU5 & VCPUG6 v VCPUT

Figure 6: Per virtual CPU and average CPU utilization.



Long term CPU usage

CPU over long time period?

% CPU Utilization

15% CPU time across cores
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Figure 5: Average CPU utilization with the baseline configurations.
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Some insights from this work



We can build practical provenance-based IDSs

We can detect intrusion out of graph structure with little metadata
— Vertex type (thread, file, socket etc...)
— Edge type (read, write, connect etc...)
Processing speed
— Current prototype
— Data generation speed < processing speed!
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Proper evaluation is hard!

- Dataset are hard to generate
- What is a good quality dataset?
- Hard to compare across papers, a lot is not available
- Experiments (i.e. attacks)
- Capture Mechanisms
- Analysis pipelines
- Leads to unsatisfactory evaluation
- | may be able to compare to similar techniques (may reuse dataset)
- ... very hard for unrelated one (i.e. ingest different data type)

- Adversarial ML?
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Identifying threats: explainability is a problem

There is a problem within the last batch of X graph elements
— 2,000 in previous figures

Good luck finding out what went wrong

Provenance forensic is an active field of research
— Promising work out of the DARPA programme

... but could we do better during detection?
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Other approaches?



Does my system do what | think it should?

/
O
O\ O Audit Plane
)
O\\/»O Enforcement Plane
(-
-

o O Regulation Plane

Pasquier et al. “Data provenance to audit compliance with privacy policy in the Internet of Things”, Personal and Ubiquitous Computing, 2017
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Some move in that direction (sort-ish)

A APT Stages
E Initial COmpromiseB EEstablish Footholdg E Internal Recon 9 gPrivilege Escalationg
A A A A
TTPs & HSG  Untrdsted Read > __Bash Exec >—»__Sensitive Read > C Sudo Exec >)
__UntrustedExec > CE rc.common__> dm
_Executable Mem & C&C Comms > '
A A A A
e ——— : Oﬁ < Or - 0 O] Ol )
,\2—_'CL “2‘\,//"(____> o—0 O—0 <—0 o_%"o
=0 o0 OO0 o O\O>=0/ oD -~ O=Do— =0 &= 05
B0 o0 0" ~ T o0 o—0 Z—0 —o—0 —0
O—0 SO O—0 —0 —0—Q Q0 —C0 >0 0

Milajerdi, Sadegh M., et al. "HOLMES: real-time APT detection through correlation of suspicious information flows." IEEE S&P 2019.
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Can we get there?



Thank you! Questions?
tfimp.org



CamFlow capture mechanism

- Leverage existing kernel features whenever possible
- Avoid alteration of existing code

- We therefore build upon:

- Linux Security Module
- to capture system events I Configuration | [ Pl

CPL

e.g. SQL, Neo4J

Provenance-aware camflowd

- to capture network events camcontd application Standard

= N et F i Ite r ; [Smrage back-end J

application
- Re I ay F S libprovenance libprovenance libprovenance
T T
TR 1
- to transfer provenance to ' ' User-space
-I security-fs I- -I xattr I- ___________________

user space T

- Se c u rity F S __________ i_ _______________ Capture _’[ Boot-buffer ]
i

- to provide a userspace 1—|
Interface for Settlngs | LSM hooks | | NetFilter hooks

== Provenance Records

I I —— System Provenance

Kernel objects’ provenance data structure — -+ Configuration
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Extent of modification

Modifications to the Linux Kernel code

System Headers C File Total LoC
PASS (v2.6.27) 18 69 87 5100
pub. 2006
LPM (v2.6.32) 13 61 74 2294
pub. 2015
CamFlow (v5.4.15) 3 0 3 4220

circa 2020
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Capture overhead

Micro-benchmark

Sys Call Whole Selective
stat 100% 28%
open/close 80% 18%

fork 6% 2%

exec 3% <1%

Macro-benchmark

Prog. Whole Selective
unpack 2% <1%
build 2% 0%
postmark 11% 6%

Selective: cost of allocating/freeing provenance “blob” + recording or not decision

Whole: Selective + cost of recording provenance information
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Advanced Persistent Threats
I-> Active Scanning ™

Identify Target & Explore Vulnerabilities % Passive Scannin g

> Malware
a -

Design Backdoor & Penetration Plan » Scripting Zero-Day Exploits

-,

> Spearphishing
=

» Supply-chain Attack

> Application Shimrin
p I- pp g

Victim Triggers Vulnerability

A 4

Deliver the Weapon
——Diverse Attack Vectors

» Job Scheduling

Hooking
Dylib Hijacking

Installation
Install Backdoor or Malware
Command & Control Connection Proxy

Give Remote Instructions to Victim Domain Fronting

' —_—

Actions on Objectives

v

Long Duration —— Low-and-Slow Attack Patterns”




